Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dinosaurian growth patterns and rapid avian growth rates

A Corrigendum to this article was published on 16 December 2015

This article has been updated


Did dinosaurs grow in a manner similar to extant reptiles, mammals or birds, or were they unique1? Are rapid avian growth rates an innovation unique to birds, or were they inherited from dinosaurian precursors2? We quantified growth rates for a group of dinosaurs spanning the phylogenetic and size diversity for the clade and used regression analysis to characterize the results. Here we show that dinosaurs exhibited sigmoidal growth curves similar to those of other vertebrates, but had unique growth rates with respect to body mass. All dinosaurs grew at accelerated rates relative to the primitive condition seen in extant reptiles. Small dinosaurs grew at moderately rapid rates, similar to those of marsupials, but large species attained rates comparable to those of eutherian mammals and precocial birds. Growth in giant sauropods was similar to that of whales of comparable size. Non-avian dinosaurs did not attain rates like those of altricial birds. Avian growth rates were attained in a stepwise fashion after birds diverged from theropod ancestors in the Jurassic period.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cladogram for the Dinosauria showing the phylogenetic and size diversity of taxa represented.
Figure 2: Growth curves for a diversity of dinosaurs.
Figure 3: Comparison of exponential-stage growth rates in dinosaurs with typical values for extant vertebrates.

Change history


  1. Ricqlès, A. de. in A Cold Look at the Warm-Blooded Dinosaurs (eds Thomas, D. K. & Olson, E. C.) 103–139 (Westview, Boulder, 1983).

    Google Scholar 

  2. Chinsamy, A., Chiappe, L. M. & Dodson, P. Growth rings in Mesozoic birds. Nature 368, 196–197 (1994).

    Article  ADS  Google Scholar 

  3. Chinsamy, A. Physiological implications of the bone histology of Syntarsus rhodesiensis (Saurischia: Theropoda). Palaeontol. Afr. 27, 77–82 (1990).

    Google Scholar 

  4. Chinsamy, A. Bone histology and growth trajectory of the prosauropod dinosaur Massospondylus carinatus Owen. Mod. Geol. 18, 319–329 (1993).

    Google Scholar 

  5. Varricchio, D. J. Bone microstructure of the Upper Cretaceous theropod dinosaur Troodon formosus. J. Vertebr. Paleontol. 13, 99–104 (1993).

    Article  Google Scholar 

  6. Curry, K. A. Ontogenetic histology of Apatosaurus (Dinosauria : Sauropoda): new insights on growth rates and longevity. J. Vertebr. Paleontol. 19, 654–665 (1999).

    Article  Google Scholar 

  7. Horner, J. R., Ricqlès, A. de & Padian, K. Long bone histology of the hadrosaurid dinosaur Maiasaura peeblesorum: growth dynamics and physiology based on an ontogenetic series of skeletal elements. J. Vertebr. Paleontol. 20, 115–129 (2000).

    Article  Google Scholar 

  8. Sander, P. M. Long bone histology of the Tendaguru sauropods: implications for growth and biology. Paleobiology 26, 466–488 (2000).

    Article  Google Scholar 

  9. Ricqlès, A. de . Zonal “growth rings” in dinosaurs. Mod. Geol. 15, 19–48 (1990).

    Google Scholar 

  10. Rimblot-Baly, F., Ricqlès, A. de & Zylberberg, L. Analyse paléohistologique d'une série de croissance partielle chez Lapparentosaurus madagascariensis (Jurassique Moyen): essai sur la dynamique de croissance d'un dinosaure sauropode. Ann. Paléontol. 81, 49–86 (1995).

    Google Scholar 

  11. Reid, R. E. H. in The Complete Dinosaur (eds Farlow, J. O. & Brett-Surman, M. K.) 449–473 (Indiana Univ. Press, Bloomington, 1997).

    Google Scholar 

  12. Ricqlès, A. de, Meunier, F. J., Castanet, J. & Francillon-Vieillot, H. in Bone Vol. 3 (ed. Hall, B. K.) 1–78 (CRC, Boca Raton, 1991).

    Google Scholar 

  13. Castanet, J., Curry Rogers, K., Cubo, J. & Boisard, J. J. Quantification of periosteal osteogenesis in ostrich and emu: implications for assessing growth in dinosaurs. C.R. Acad. Sci. III 323, 543–550 (2000).

    Article  CAS  Google Scholar 

  14. Erickson, G. M. & Tumanova, T. A. Growth curve of Psittacosaurus mongoliensis Osborn (Ceratopsia: Psittacosauridae) inferred from long bone histology. Zool. J. Linn. Soc. 130, 551–566 (2000).

    Article  Google Scholar 

  15. Varricchio, D. J. in Encyclopedia of Dinosaurs (eds Currie, P. J. & Padian, K.) 282–288 (Academic, San Diego, 1997).

    Google Scholar 

  16. Sussman, M. Growth and Development (Prentice-Hall, New Jersey, 1964).

    Google Scholar 

  17. Case, T. J. On the evolution and adaptive significance of postnatal growth rates in the terrestrial vertebrates. Q. Rev. Biol. 53, 243–282 (1978).

    Article  CAS  Google Scholar 

  18. Calder, W. A. III . Size, Function, and Life History (Harvard Univ. Press, Cambridge, Massachusetts, 1984).

    Google Scholar 

  19. Norell, M. A., Clark, J. M. & Makovicky, P. J. in New Perspectives on the Origin and Early Evolution of Birds; Proc. Int. Symp. in Honor of John H. Ostrom (eds Gauthier, J. & Gall, L.) (Special Publ. Peabody Mus. Nat. Hist., New Haven, in the press).

  20. Wells, J. W. Coral growth and geochronometry. Nature 197, 948–950 (1963).

    Article  ADS  Google Scholar 

  21. Case, T. J. Speculations on the growth rate and reproduction of some dinosaurs. Paleobiology 4, 320–328 (1978).

    Article  Google Scholar 

  22. Bakker, R. T. The Dinosaur Heresies (Kennsington, New York, 1986).

    Google Scholar 

  23. Xu, X., Zhou, Z. & Wang, X. The smallest known non-avian theropod dinosaur. Nature 408, 705–708 (2000).

    Article  ADS  CAS  Google Scholar 

  24. Appenzeller, T. Argentine dinos vie for heavyweight title. Science 266, 1805 (1994).

    Article  ADS  CAS  Google Scholar 

  25. Castanet, J. & Smirina, E. Introduction to the skeletochronological method in amphibians and reptiles. Ann. Sci. Nat. Zool. 11, 191–196 (1990).

    Google Scholar 

  26. Anderson, J. F., Hall-Martin, A. & Russell, D. A. Long-bone circumference and weight in mammals, birds and dinosaurs. J. Zool. A207, 53–61 (1985).

    Google Scholar 

  27. Thompson, D. W. On Growth and Form (Cambridge Univ. Press, New York, 1943).

    Google Scholar 

  28. Seebacher, F. A new method to calculate allometric length-mass relationships of dinosaurs. J. Vertebr. Paleontol. 21, 51–60 (2001).

    Article  Google Scholar 

  29. Chiappe, L. M., Norell, M. A. & Clark, J. A. The skull of a relative of the stem-group bird Mononychus. Nature 392, 275–278 (1998).

    Article  ADS  CAS  Google Scholar 

Download references


We thank J. Horner and the staff of the Museum of the Rockies; M. Norell and staff of the American Museum of Natural History; A. Woodward and the Florida Fish and Wildlife Conservation Commission; and T. Tumanova, B. Breithaupt, P. Makovicky, M. Sander, D. Varricchio, E. Creech, R. Rogers, B. Erickson and K. Womble. This research was funded by the College of Arts and Sciences and Department of Biological Science of Florida State University.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Gregory M. Erickson.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Erickson, G., Rogers, K. & Yerby, S. Dinosaurian growth patterns and rapid avian growth rates. Nature 412, 429–433 (2001).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing