Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Warm tropical ocean surface and global anoxia during the mid-Cretaceous period


The middle of the Cretaceous period (about 120 to 80 Myr ago) was a time of unusually warm polar temperatures1, repeated reef-drowning in the tropics2 and a series of oceanic anoxic events (OAEs) that promoted both the widespread deposition of organic-carbon-rich marine sediments and high biological turnover3,4,5,6,7,8. The cause of the warm temperatures is unproven but widely attributed to high levels of atmospheric greenhouse gases such as carbon dioxide7,8,9,10,11,12. In contrast, there is no consensus on the climatic causes and effects of the OAEs, with both high biological productivity and ocean ‘stagnation’ being invoked as the cause of ocean anoxia3,4,5,6,7,8. Here we show, using stable isotope records from multiple species of well-preserved foraminifera, that the thermal structure of surface waters in the western tropical Atlantic Ocean underwent pronounced variability about 100 Myr ago, with maximum sea surface temperatures 3–5 °C warmer than today. This variability culminated in a collapse of upper-ocean stratification during OAE-1d (the ‘Breistroffer’ event), a globally significant period of organic-carbon burial that we show to have fundamental, stratigraphically valuable, geochemical similarities to the main OAEs of the Mesozoic era. Our records are consistent with greenhouse forcing being responsible for the warm temperatures, but are inconsistent both with explanations for OAEs based on ocean stagnation, and with the traditional view (reviewed in ref. 12) that past warm periods were more stable than today's climate.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Reconstruction of the mid-Cretaceous (Albian)27 period, showing the global location of sites with well-dated sections correlative to the upper Albian Breistroffer oceanic anoxic event.
Figure 2: Mid-Cretaceous (late Albian to early Cenomanian) records from ODP Site 1052, Blake nose, western Atlantic.
Figure 3: Expanded (550-kyr) δ18O and temperature records from ODP Site 1052.


  1. Fischer, A. G. in Climate in Earth History (ed. Berger, W.) 97–104 (National Academy of Sciences, Washington DC, 1982).

    Google Scholar 

  2. Wilson, P. A., Jenkyns, H. C., Elderfield, H. & Larson, R. L. The paradox of drowned carbonate platforms and the origin of Cretaceous guyots. Nature 392, 889–894 (1998).

    ADS  CAS  Article  Google Scholar 

  3. Jenkyns, H. C. Cretaceous anoxic events: from continents to oceans. J. Geol. Soc. Lond. 137, 171–188 (1980).

    Article  Google Scholar 

  4. Herbert, T. D. & Fischer, A. G. Milankovitch climatic origin of mid-Cretaceous black shale rhythms in central Italy. Nature 321, 739–743 (1986).

    ADS  CAS  Article  Google Scholar 

  5. Arthur, M. A., Dean, W. E. & Pratt, L. M. Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turonian boundary. Nature 335, 714–717 (1988).

    ADS  Article  Google Scholar 

  6. Arthur, M. A., Jenkyns, H. C., Brumsack, H. & Schlanger, S. O. in Cretaceous Resources, Events and Rhythms (eds Ginsburg, R. N. & Beaudoin, B.) 75–119 (NATO ASI Series C, 304, Kluwer Academic, Dordrecht, 1990).

    Google Scholar 

  7. Schlanger, S. O., Jenykns, H. C. & Premoli-Silva, I. Volcanism and vertical tectonics in the Pacific basin related to global Cretaceous transgressions. Earth Planet. Sci. Lett. 52, 435–449 (1981).

    ADS  Article  Google Scholar 

  8. Arthur, M. A., Dean, W. E. & Schlanger, S. O. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present (eds Sundquist, E. T. & Broecker, W. S.) 504–529 (AGU Monograph 32, American Geophysical Union, Washington DC, 1985).

    Google Scholar 

  9. Barron, E. J. & Washington, W. M. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present (eds Sundquist, E. T. & Broecker, W. S.) 546–553 (AGU Monograph 32, American Geophysical Union, Washington DC, 1985).

    Google Scholar 

  10. Manabe, S. & Bryan, K. CO2-induced change in a coupled ocean-atmosphere model and its palaeoclimatic implications. J. Geophys. Res. 90, 11689–11708 (1985).

    ADS  Article  Google Scholar 

  11. Crowley, T. J. Past CO2 changes and tropical sea surface temperatures. Paleoceanography 6, 387–394 (1991).

    ADS  Article  Google Scholar 

  12. Barron, E. in Effects of Past Global Change on Life 108–117 (Studies in Geophysics, National Academy Press, Washington DC, 1995).

    Google Scholar 

  13. Huber, B. T., Hodell, D. A. & Hamilton, C. P. Middle-Late cretaceous climate of southern high latitudes: stable isotopic evidence for minimal equatorial-to-pole thermal gradients. Geol. Soc. Am. Bull. 107, 1164–1191 (1995).

    ADS  Article  Google Scholar 

  14. Wilson, P. A. & Opdyke, B. N. Equatorial sea surface temperatures for the Maastrichtian revealed through remarkable preservation of metastable carbonate. Geology 24, 555–558 (1996).

    ADS  CAS  Article  Google Scholar 

  15. Norris, R. D. & Wilson, P. A. Low latitude sea surface temperatures for the mid-Cretaceous and the evolution of planktonic foraminifera. Geology 26, 823–826 (1998).

    ADS  Article  Google Scholar 

  16. Erbacher, J. & Thurow, J. Influence of oceanic anoxic events on the evolution of mid-Cretaceous radiolaria in the North Atlantic and western Tethys. Mar. Micropaleontol. 30, 139–158 (1997).

    ADS  Article  Google Scholar 

  17. Erbacher, R. D., Huber, B. T., Norris, R. D. & Markey, M. Increased thermohaline stratification as a possible cause for a Cretaceous oceanic anoxic event. Nature 409, 325–327 (2001).

    ADS  CAS  Article  Google Scholar 

  18. Erba, E. et al. Integrated stratigraphy of the Cismon Apticore (Southern Alps, Italy): “A reference section” for the Barremian-Aptian interval at low latitudes. J. Foram. Res. 29, 371–391 (1999).

    Google Scholar 

  19. Opdyke, B. N., Erba, E. & Larson, R. L. Hot LIPs and mantle methane. Eos 80, F486–F487 (1999).

    Google Scholar 

  20. Hesselbo, S. P. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature 406, 392–395 (2000).

    ADS  CAS  Article  Google Scholar 

  21. Shipboard Scientific Party . Explanatory notes. Proc. ODP Init. Rep. 144, 20 (1995).

    Google Scholar 

  22. Crowley, T. J. & Zachos, J. C. in Warm Climates in Earth History (eds Huber, B. T., MacLeod, K. G. & Wing, S. L.) 50–76 (Cambridge Univ. Press, Cambridge, 2000).

    Google Scholar 

  23. Sarmiento, J. L., Herbert, T. D. & Toggweiler, J. R. Causes of anoxia in the world ocean. Glob. Biogeochem. Cycles 2, 115–128 (1988).

    ADS  CAS  Article  Google Scholar 

  24. Wolff, T., Mulitza, S., Ruhlemann, C. & Wefer, G. Response of the tropical Atlantic thermocline to late Quaternary trade wind changes. Palaeoceanography 14, 374–383 (1999).

    ADS  Article  Google Scholar 

  25. Gale, A. S., Kennedy, W. J., Burnett, J. A., Caron, M. & Kidd, B. E. The late Albian to Early Cenomanian succession at Mont Risou near Rosans (Drome, SE France): an integrated study (ammonites, inoceramids, planktonic foraminifera, nannofossils, oxygen and carbon isotopes. Cret. Res. 17, 515–606 (1996).

    Article  Google Scholar 

  26. Stoll, H. M. & Schrag, D. P. High-resolution stable isotope records from the Upper Cretaceous rocks of Italy and Spain: Glacial episodes in a greenhouse planet? Geol. Soc. Am. Bull. 112, 308–319 (2000).

    ADS  Article  Google Scholar 

  27. Smith, A. G., Smith, D. G. & Funnell, B. M. Atlas of Mesozoic and Cenozoic Coastlines (Cambridge Univ. Press, Cambridge, 1994).

    Google Scholar 

  28. Hofmann, P., Ricken, W., Schwark, R. L. & Leythaeuser, D. Carbon-sulfur-iron relationships in δ13C of organic matter from late Albian sedimentary rocks from the North Atlantic Ocean: palaeoceanographic implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 163, 97–113 (2000).

    Article  Google Scholar 

  29. Bemis, B. E., Spero, H. J., Bijma, J. & Lea, D. W. Reevaluation of the oxygen isotopic composition of planktonic foraminifera: Experimental results and revised palaeotemperature equations. Palaeoceanography 13, 150–160 (1998).

    ADS  Article  Google Scholar 

  30. Poulsen, C. J., Barron, E. J., Peterson, W. H. & Wilson, P. A. A reinterpretation of mid-Cretaceous shallow-marine temperatures through model-data comparison. Palaeoceanography 14, 679–697 (1999).

    ADS  Article  Google Scholar 

Download references


We thank M. Cooper, M. Hall and K. Davis for laboratory assistance and manuscript production; M. Arthur and E. Barron for comments on the manuscript; and D. Kroon, H. Elderfield, J. Erbacher, B. Huber, L. Kump, B. Opdyke, C. Poulsen, G. Ravizza, E. Rohling and N. Shackleton for support and discussions. This work was supported by a NERC post-doctoral research fellowship and a UK ODP rapid response grant.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Paul A. Wilson.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wilson, P., Norris, R. Warm tropical ocean surface and global anoxia during the mid-Cretaceous period. Nature 412, 425–429 (2001).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing