Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

In situ detection of collisionless reconnection in the Earth's magnetotail

Abstract

Magnetic reconnection is the process by which magnetic field lines of opposite polarity reconfigure to a lower-energy state, with the release of magnetic energy to the surroundings. Reconnection at the Earth's dayside magnetopause and in the magnetotail allows the solar wind into the magnetosphere1,2. It begins in a small ‘diffusion region’, where a kink in the newly reconnected lines produces jets of plasma away from the region. Although plasma jets from reconnection have previously been reported3,4,5,6,7, the physical processes that underlie jet formation have remained poorly understood because of the scarcity of in situ observations of the minuscule diffusion region. Theoretically, both resistive and collisionless processes can initiate reconnection8,9,10,11,12,13,14, but which process dominates in the magnetosphere is still debated. Here we report the serendipitous encounter of the Wind spacecraft with an active reconnection diffusion region, in which are detected key processes predicted by models8,9,10,11,12,13 of collisionless reconnection. The data therefore demonstrate that collisionless reconnection occurs in the magnetotail.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematics of magnetic reconnection in the Earth's magnetosphere.
Figure 2: Observations by Wind in the ion diffusion region.
Figure 3: Detection by Wind of a low-energy electron beam carrying the Hall current.

Similar content being viewed by others

References

  1. Dungey, J. W. Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6, 47–48 (1961).

    Article  ADS  Google Scholar 

  2. Cowley, S. W. H. in Magnetic Reconnection in Space and Laboratory Plasmas (ed. Hones, E. W.) 375–378 (Geophysics Monograph 30, American Geophysical Union, Washington DC, 1984).

    Book  Google Scholar 

  3. Paschmann, G. et al. Plasma acceleration at the Earth's magnetopause: Evidence for reconnection. Nature 282, 243–246 (1979).

    Article  ADS  Google Scholar 

  4. Sonnerup, B. U. Ö. et al. Evidence for reconnection at the earth's magnetopause. J. Geophys. Res. 86, 10049–10067 (1981).

    Article  ADS  Google Scholar 

  5. Gosling, J. T., Thomsen, M. F., Bame, S. J. & Russell, C. T. Accelerated plasma flows at the near-tail magnetopause. J. Geophys. Res. 91, 3029–3041 (1986).

    Article  ADS  Google Scholar 

  6. Phan, T. D. et al. Extended magnetic reconnection at the earth's magnetopause from detection of bi-directional jets. Nature 404, 848–850 (2000).

    Article  ADS  CAS  Google Scholar 

  7. Øieroset, M., Phan, T. D., Lin, R. P. & Sonnerup, B. U. Ö. Walén and variance analyses of high-speed flows observed by Wind in the midtail plasma sheet: Evidence for reconnection. J. Geophys. Res. 105, 25247–25263 (2000).

    Article  ADS  Google Scholar 

  8. Sonnerup, B. U. Ö. in Solar System Plasma Physics, Vol. III (eds Lanzerotti, L. T., Kennel, C. F. & Parker, E. N.) 45–108 (North-Holland, New York, 1979).

    Google Scholar 

  9. Shay, M. A., Drake, J. F., Rogers, B. N. & Denton, R. E. Alfvénic collisionless magnetic reconnection and the Hall term. J. Geophys. Res. 106, 3759–3772 (2001).

    Article  ADS  Google Scholar 

  10. Ma, Z. W. & Bhattacharjee, A. Hall magnetohydrodynamic reconnection: The Geospace Environment Modeling challenge. J. Geophys. Res. 106, 3773–3782 (2001).

    Article  ADS  Google Scholar 

  11. Hesse, M., Birn, J. & Kuznetsova, M. Collisionless magnetic reconnection: Electron processes and transport modeling. J. Geophys. Res. 106, 3721–3735 (2001).

    Article  ADS  Google Scholar 

  12. Pritchett, P. L. Geospace Environment Modeling magnetic reconnection challenge: Simulations with a full particle electromagnetic code. J. Geophys. Res. 106, 3783–3798 (2001).

    Article  ADS  Google Scholar 

  13. Birn, J. et al. Geospace Environmental Modeling (GEM) magnetic reconnection challenge. J. Geophys. Res. 106, 3715–3719 (2001).

    Article  ADS  Google Scholar 

  14. Vasyliunas, V. M. Theoretical models of magnetic field line merging. I. Rev. Geophys. Space Phys. 13, 303–336 (1975).

    Article  ADS  CAS  Google Scholar 

  15. Coroniti, F. V. & Eviatar, A. Magnetic field reconnection in collisionless plasma. Astrophys. Suppl. 33, 189–210 (1977).

    Article  ADS  Google Scholar 

  16. Cattell, C. et al. ISEE-1 and Geotail observations of low frequency waves at the magnetopause. J. Geophys. Res. 100, 11823–11829 (1995).

    Article  ADS  Google Scholar 

  17. Sibeck, D. G. et al. in Magnetospheric Plasma Sources and Losses Ch. 5 (eds Hultqvist, B. et al.) 207–283 (Space Sciences Series of ISSI 6, Kluwer Academic, Dordrecht, 1999).

    Google Scholar 

  18. Shay, M. A., Drake, J. F., Rogers, B. N. & Denton, R. E. The scaling of collisionless, magnetic reconnection for large systems. Geophys. Res. Lett. 26, 2163–2166 (1999).

    Article  ADS  Google Scholar 

  19. Fujimoto, M. et al. Observations of earthward streaming electrons at the trailing boundary of a plasmoid. Geophys. Res. Lett. 24, 2893–2896 (1997).

    Article  ADS  Google Scholar 

  20. Hoshino, M., Mukai, T., Yamamoto, T. & Kokubun, S. Ion dynamics in magnetic reconnection: Comparison between numerical simulations and Geotail observations. J. Geophys. Res. 103, 4509–4530 (1998).

    Article  ADS  Google Scholar 

  21. Nagai, T. et al. Geotail observations of the Hall current system. Evidence of magnetic reconnection in the magnetotail. J. Geophys. Res. (in the press).

  22. Deng, X. H. & Matsumoto, H. Rapid magnetic reconnection in the Earth's magnetosphere generated by whistler waves. Nature 410, 557–559 (2001).

    Article  ADS  CAS  Google Scholar 

  23. Terasawa, T. Hall current effect on tearing mode instability. Geophys. Res. Lett. 10, 475–478 (1983).

    Article  ADS  Google Scholar 

  24. Wang, X., Bhattacharjee, A. & Ma, Z. W. Collisionless reconnection: Effects of Hall current and electron pressure gradient. J. Geophys. Res. 105, 27633–27648 (2000).

    Article  ADS  Google Scholar 

  25. Goodrich, C. C., Lyon, J. G., Wiltberger, M., Lopez, R. E. & Papadopoulos, K. An overview of the impact of the January 10–11, 1997, magnetic cloud on the magnetosphere via global MHD simulations. Geophys. Res. Lett. 25, 2537–2540 (1998).

    Article  ADS  Google Scholar 

  26. Raeder, J. Modeling the magnetosphere for northward interplanetary magnetic field: Effects of electrical resistivity. J. Geophys. Res. 104, 17357–17368 (1999).

    Article  ADS  Google Scholar 

  27. Gombosi, T. I., DeZeeuw, D. L., Groth, C. P. T., Powell, K. G. & Song, P. in Physics Space Plasmas Vol. 15 (eds Chang, T. & Jasperse, J. R.) 121–128 (MIT Press, Cambridge, Massachusetts, 1998).

    Google Scholar 

  28. Sonnerup, B. U. Ö. & Cahill, L. J. Magnetopause structure and attitude from Explorer 12 observations. J. Geophys. Res. 72, 171–183 (1967).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank S. Bale, C. Chaston, B. Sonnerup, J. Drake and A. Bhattacharjee for discussions and T. Nagai for providing a preprint of his Geotail manuscript at an early stage. This work is supported by grants from NASA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Øieroset.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Øieroset, M., Phan, T., Fujimoto, M. et al. In situ detection of collisionless reconnection in the Earth's magnetotail. Nature 412, 414–417 (2001). https://doi.org/10.1038/35086520

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35086520

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing