Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Plasma cell differentiation requires the transcription factor XBP-1

Abstract

Considerable progress has been made in identifying the transcription factors involved in the early specification of the B-lymphocyte lineage. However, little is known about factors that control the transition of mature activated B cells to antibody-secreting plasma cells. Here we report that the transcription factor XBP-1 is required for the generation of plasma cells. XBP-1 transcripts were rapidly upregulated in vitro by stimuli that induce plasma-cell differentiation, and were found at high levels in plasma cells from rheumatoid synovium. When introduced into B-lineage cells, XBP-1 initiated plasma-cell differentiation. Mouse lymphoid chimaeras deficient in XBP-1 possessed normal numbers of activated B lymphocytes that proliferated, secreted cytokines and formed normal germinal centres. However, they secreted very little immunoglobulin of any isotype and failed to control infection with the B-cell-dependent polyoma virus, because plasma cells were markedly absent. XBP-1 is the only transcription factor known to be selectively and specifically required for the terminal differentiation of B lymphocytes to plasma cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: XBP-1 expression in rheumatoid synovium.
Figure 2: Induction of XBP-1 is upstream and downstream of signals that drive plasma-cell differentiation.
Figure 3: Gene targeting to generate XBP-1-deficient cells.
Figure 4: XBP-1 is required for immunoglobulin secretion.
Figure 5
Figure 6: In vitro phenotype of XBP-1-/- B cells.
Figure 7: Decreased formation of plasma cells in the absence of XBP-1.
Figure 8: XBP-1-/- lymphocytes do not respond to T-cell-independent or -dependent antigens or to polyoma virus in vivo.

Similar content being viewed by others

References

  1. Ahmed, R. & Gray, D. Immunological memory and protective immunity: understanding their relation. Science 272, 54–60 (1996).

    ADS  CAS  PubMed  Google Scholar 

  2. DalPorto, J. M., Haberman, A. M., Shlomchik, M. J. & Kelsoe, G. Antigen drives very low affinity B cells to become plasmacytes and enter germinal centers. J. Immunol. 161, 5373–5381 (1998).

    CAS  Google Scholar 

  3. Arpin, C. et al. Generation of memory B cells and plasma cells in vitro. Science 268, 720–722 (1995).

    ADS  CAS  PubMed  Google Scholar 

  4. Foy, T. M., Aruffo, A., Bajorath, J., Buhlmann, J. E. & Noelle, R. J. Immune regulation by CD40 and its ligand GP39. Annu. Rev. Immunol. 14, 591–617 (1996).

    CAS  PubMed  Google Scholar 

  5. Randall, T. D. et al. Interleukin-5 (IL-5) and IL-6 define two molecularly distinct pathways of B-cell differentiation. Mol. Cell. Biol. 13, 3929–3936 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Takatsu, K. Cytokines involved in B-cell differentiation and their sites of action. Proc. Soc. Exp. Biol. Med. 215, 121–133 (1997).

    CAS  PubMed  Google Scholar 

  7. Altmeyer, A. et al. Reversal of EBV immortalization precedes apoptosis in IL-6-induced human B cell terminal differentiation. Immunity 7, 667–677 (1997).

    CAS  PubMed  Google Scholar 

  8. Illera, V. A., Perandones, C. E., Stunz, L. L., Mower, D. A. Jr & Ashman, R. F. Apoptosis in splenic B lymphocytes. Regulation by protein kinase C and IL-4. J. Immunol. 151, 2965–2973 (1993).

    CAS  PubMed  Google Scholar 

  9. Choe, J. & Choi, Y. S. IL-10 interrupts memory B cell expansion in the germinal center by inducing differentiation into plasma cells. Eur. J. Immunol. 28, 508–515 (1998).

    CAS  PubMed  Google Scholar 

  10. Liu, Y. J. & Banchereau, J. Regulation of B-cell commitment to plasma cells or to memory B cells. Semin. Immunol. 9, 235–240 (1997).

    CAS  PubMed  Google Scholar 

  11. McHeyzer-Williams, M. G. & Ahmed, R. B cell memory and the long-lived plasma cell. Curr. Opin. Immunol. 11, 172–179 (1999).

    CAS  PubMed  Google Scholar 

  12. Morse, L., Chen, D., Franklin, D., Xiong, Y. & Chen-Kiang, S. Induction of cell cycle arrest and B cell terminal differentiation by CDK inhibitor p18INK4c and IL-6. Immunity 6, 47–56 (1997).

    CAS  PubMed  Google Scholar 

  13. Kopf, M. et al. Impaired immune and acute-phase responses in interleukin-6-deficient mice. Nature 368, 339–342 (1994).

    ADS  CAS  PubMed  Google Scholar 

  14. Henderson, A. & Calame, K. Transcriptional regulation during B cell development. Annu. Rev. Immunol. 16, 163–200 (1998).

    CAS  PubMed  Google Scholar 

  15. Glimcher, L. H. & Singh, H. Transcription factors in lymphocyte development—T and B cells get together. Cell 96, 13–23 (1999).

    CAS  PubMed  Google Scholar 

  16. Oliver, A. M., Martin, F. & Kearney, J. F. Mouse CD38 is down-regulated on germinal center B cells and mature plasma cells. J. Immunol. 158, 1108–1115 (1997).

    CAS  PubMed  Google Scholar 

  17. Morrison, A. M., Nutt, S. L., Thevenin, C., Tolink, A. & Busslinger, M. Loss- and gain-of-function mutations reveal an important role of BSAP (Pax-5) at the start and end of B cell differentiation. Semin. Immunol. 10, 133–142 (1998).

    CAS  PubMed  Google Scholar 

  18. Schliephake, D. E. & Schimpl, A. Blimp-1 overcomes the block in IgM secretion in lipopolysaccharide/anti-mu F(ab′)2-co-stimulated B lymphocytes. Eur. J. Immunol. 26, 268–271 (1996).

    CAS  PubMed  Google Scholar 

  19. Turner, C. A. Jr, Mack, D. H. & Davis, M. M. Blimp-1, a novel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells. Cell 77, 297–306 (1994).

    CAS  PubMed  Google Scholar 

  20. Angelin-Duclos, C., Cattoretti, G., Lin, K.-I. & Calame, K. Commitment of B lymphocytes to a plasma cell fate is associated with Blimp-1 expression in vivo. J. Immunol. 165, 5462–5471 (2000).

    CAS  PubMed  Google Scholar 

  21. Lin, Y., Wong, K.-K. & Calame, K. Repression of c-myc transcription by Blimp-1, an inducer of terminal B cell differentiation. Science 276, 596–599 (1997).

    CAS  PubMed  Google Scholar 

  22. Melchers, F. B-lymphocyte-lineage cells from early precursors to Ig-secreting plasma cells: targets of regulation by the myc/mad/max families of genes? Curr. Top. Microbiol. Immunol. 224, 19–30 (1997).

    CAS  PubMed  Google Scholar 

  23. Yu, J., Angelin-Duclos, C., Greenwood, J., Liao, J. & Calame, K. Transcriptional repression by Blimp-1 (PRDI-BF1) involves recruitment of histone deacetylase. Mol. Cell. Biol. 20, 2592–2603 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Liou, H. C. et al. A new member of the leucine zipper class of proteins that binds to the HLA DR alpha promoter. Science 247, 1581–1584 (1990).

    ADS  CAS  PubMed  Google Scholar 

  25. Clauss, I. M. et al. In situ hybridization studies suggest a role for the basic region-leucine zipper protein hXBP-1 in exocrine gland and skeletal development during mouse embryogenesis. Dev. Dynam. 197, 146–156 (1993).

    CAS  Google Scholar 

  26. Gravallese, E. M., Darling, J. M., Ladd, A. L., Katz, J. N. & Glimcher, L. H. In situ hybridization studies of stromelysin and collagenase mRNA expression in rheumatoid synovium. Arthritis Rheum. 34, 1076–1084 (1991).

    CAS  PubMed  Google Scholar 

  27. Reimold, A. M. et al. An essential role in liver development for transcription factor XBP-1. Genes Dev. 14, 152–157 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wen, X. Y. et al. Identification of c-myc promoter-binding protein and X-box binding protein 1 as interleukin-6 target genes in human multiple myeloma cells. Int. J. Oncol. 15, 173–178 (1999).

    CAS  PubMed  Google Scholar 

  29. Reimold, A. M. et al. Transcription factor B cell lineage-specific activator protein regulates the gene for human X-box binding protein 1. J. Exp. Med. 183, 393–401 (1996).

    CAS  PubMed  Google Scholar 

  30. Chen, J., Lansford, R., Stewart, V., Young, F. & Alt, F. W. RAG-2-deficient blastocyst complementation: an assay of gene function in lymphocyte development. Proc. Natl Acad. Sci. USA 90, 4528–4532 (1993).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim, H. J., Krenn, V., Steinhauser, G. & Berek, C. Plasma cell development in synovial germinal centers in patients with rheumatoid and reactive arthritis. J. Immunol. 162, 3053–3062 (1999).

    CAS  PubMed  Google Scholar 

  32. Blackman, M. A., Tigges, M. A., Minie, M. E. & Koshland, M. E. A model system for peptide hormone action in differentiation: interleukin 2 induces a B lymphoma to transcribe the J chain gene. Cell 47, 609–617 (1986).

    CAS  PubMed  Google Scholar 

  33. Brooks, K., Yuan, D., Uhr, J. W., Krammer, P. H. & Vitetta, E. S. Lymphokine-induced IgM secretion by clones of neoplastic B cells. Nature 302, 825–826 (1983).

    ADS  CAS  PubMed  Google Scholar 

  34. Franzoso, G. et al. Mice deficient in nuclear factor (NF)-kappa B/p52 present with defects in humoral responses, germinal center reactions, and splenic microarchitecture. J. Exp. Med. 187, 147–159 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Mittrucker, H. W. et al. Requirement for the transcription factor LSIRF/IRF4 for mature B and T lymphocyte function. Science 275, 540–543 (1997).

    CAS  PubMed  Google Scholar 

  36. Schwarz, E. M., Krimpenfort, P., Berns, A. & Verma, I. M. Immunological defects in mice with a targeted disruption in Bcl-3. Genes Dev. 11, 187–197 (1997).

    CAS  PubMed  Google Scholar 

  37. Dent, A. L., Shaffer, A. L., Yu, X., Allman, D. & Staudt, L. M. Control of inflammation, cytokine expression, and germinal center formation by BCL-6. Science 276, 589–592 (1997).

    CAS  PubMed  Google Scholar 

  38. Sanderson, R. D., Lalor, P. & Bernfield, M. B lymphocytes express and lose syndecan at specific stages of differentiation. Cell Regul. 1, 27–35 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bachmann, M. F. & Kopf, M. The role of B cells in acute and chronic infections. Curr. Opin. Immunol. 332–339 (1999).

  40. Szomolanyi-Tsuda, E. & Welsh, R. M. T cell-independent antibody-mediated clearance of polyoma virus in T cell-deficient mice. J. Exp. Med. 183, 403–411 (1996).

    CAS  PubMed  Google Scholar 

  41. Messika, E. J. et al. Differentiated effect of B lymphocyte-induced maturation protein (Blimp-1) expression on cell fate during B cell development. J. Exp. Med. 188, 515–525 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Knodel, M., Kuss, A. W., Lindemann, D., Berberich, I. & Schimpl, A. Reversal of Blimp-1-mediated apoptosis by A1, a member of the Bcl-2 family. Eur. J. Immunol. 29, 2988–2998 (1999).

    CAS  PubMed  Google Scholar 

  43. Lin, K.-I., Lin, Y. & Calame, K. Repression of c-myc is necessary but not sufficient for terminal differentiation of B lymphocytes in vitro. Mol. Cell. Biol. 20, 8684–8695 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Soro, P. G. et al. Differential involvement of the transcription factor blimp-1 in T cell-independent and -dependent B cell differentiation to plasma cells. J. Immunol. 163, 611–617 (1999).

    CAS  PubMed  Google Scholar 

  45. Hodge, M. R. et al. Hyperproliferation and dysregulation of IL-4 expression in NF-ATp-deficient mice. Immunity 4, 397–405 (1996).

    CAS  PubMed  Google Scholar 

  46. Szabo, S. J. et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100, 655–669 (2000).

    CAS  PubMed  Google Scholar 

  47. Manis, J. P. et al. Class switching in B cells lacking 3′ immunoglobulin heavy chain enhancers. J. Exp. Med. 188, 1421–1431 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Gartner, F., Alt, F. W., Monroe, R. J. & Seidl, K. J. Antigen-independent appearance of recombination activating gene (RAG)-positive bone marrow B cells in the spleens of immunized mice. J. Exp. Med. 192, 1745–1754 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Szomolanyi-Tsuda, E., Brien, J. D., Dorgan, J. E., Welsh, R. M. & Garcea, R. L. The role of CD40–CD154 interaction in antiviral T cell-independent IgG responses. J. Immunol. 164, 5877–5882.

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (L.H.G., F.A. and A.R.) and the Hood Foundation (J.M.), and a gift from the G. Harold and Leila Y. Mathers Charitable Foundation (L.H.G.). We thank A. Erlebacher, K. Mowen and S. Peng for a review of the manuscript; L. Davidson and K. Sigrist for production of XBP/RAG-/- chimaeras; M. Wheaton for technical assistance with the polyoma virus experiments; C. McCall for preparation of the manuscript; and A. Bottaro and I. Kuzin for IgM primers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurie H. Glimcher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reimold, A., Iwakoshi, N., Manis, J. et al. Plasma cell differentiation requires the transcription factor XBP-1. Nature 412, 300–307 (2001). https://doi.org/10.1038/35085509

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35085509

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing