Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Water and the martian landscape

Abstract

Over the past 30 years, the water-generated landforms and landscapes of Mars have been revealed in increasing detail by a succession of spacecraft missions. Recent data from the Mars Global Surveyor mission confirm the view that brief episodes of water-related activity, including glaciation, punctuated the geological history of Mars. The most recent of these episodes seems to have occurred within the past 10 million years. These new results are anomalous in regard to the prevailing view that the martian surface has been continuously extremely cold and dry, much as it is today, for the past 3.9 billion years. Interpretations of the new data are controversial, but explaining the anomalies in a consistent manner leads to potentially fruitful hypotheses for understanding the evolution of Mars in relation to Earth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Glaciated terrain east of Hellas Planitia, at latitude 42° S, longitude 252° W.
Figure 2: High-resolution Mars Orbiter Camera (MOC) image of a fluvial channel system at latitude 7.9° N, longitude 205.8° W, south of Cerberus Rupes (MOC Image M21-01914).
Figure 3: Large contraction-crack polygons developed on the floor of a northern-plains crater at approximately 67.5° N, 312.5° W (MOC Image M01-00294).
Figure 4: Oblique view of topographic data from the Mars Orbiter Laser Altimeter (MOLA) showing downstream portions of the outflow channel Kasei Vallis.
Figure 5: Comparison of simplified channel cross-sections for cataclysmic flood channels on Mars (upper two channels) and Earth (lower channels).
Figure 6: MOC image (M09-04718) of small gullies and other hillslope features in the central peak area of Hale Crater (latitude 36° S, longitude 37° W).
Figure 7: Morphogenetic regions for climate-related landforms on Earth91.
Figure 8: Esker-like ridges in southern Argyre Planitia (latitude 56° S, longitude 40° W).
Figure 9: Portion of MOC Image MOO-01511 showing detail of esker-like ridge in southern Argyre Planitia (Fig. 8).

Similar content being viewed by others

References

  1. Masursky, H. An overview of geologic results from Mariner 9. J. Geophys. Res. 78, 4037–4047 (1973).

    Article  ADS  Google Scholar 

  2. Carr, M. H. Water on Mars (Oxford Univ. Press, New York, 1996).

    Google Scholar 

  3. Malin, M. C. et al. Early views of the Martian surface from the Mars Orbiter Camera of Mars Global Surveyor. Science 279, 1681–1685 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Smith, D. E. et al. The global topography of Mars and implications for surface evolution. Science 284, 1495–1502 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Whewell, W. Philosophy of the Inductive Sciences (Parker, London, 1847).

    MATH  Google Scholar 

  6. Chamberlin, T. C. The methods of Earth-sciences. Pop. Sci. Mon. 66, 66–75 (1904).

    Google Scholar 

  7. Gilbert, G. K. The origin of hypotheses, illustrated by a discussion of a topographic problem. Science 3, 1–13 (1896).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Baker, V. R. in The Scientific Nature of Geomorphology (eds Rhoads, B. L. & Thorn, C. E.) 57–85 (Wiley, New York, 1996).

    Google Scholar 

  9. Baker, V. R. The pragmatic roots of American Quaternary geology and geomorphology. Geomorphology 16, 197–215 (1996).

    Article  ADS  Google Scholar 

  10. Davis, W. M. The value of outrageous geological hypotheses. Science 63, 463–468 (1926).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Jakosky, B. M. & Haberle, R. M. in Mars (eds Kieffer, H. H., Jakosky, B. M., Snyder, C. W. & Matthews, M. S.) 969–1016 (Univ. Arizona Press, Tucson, 1992).

    Google Scholar 

  12. Greeley, R., Lancaster, N., Lee, S. & Thomas, P. in Mars (eds Kieffer, H. H., Jakosky, B. M., Snyder, C. W. & Matthews, M. S.) 730–766 (Univ. Arizona Press, Tucson, 1992).

    Google Scholar 

  13. Carr, M. H. & Schaber, G. G. Martian permafrost features. J. Geophys. Res. 82, 4039–4054 (1977).

    Article  ADS  Google Scholar 

  14. Lucchitta, B. K. Mars and Earth: comparison of cold climate features. Icarus 45, 264–303 (1981).

    Article  ADS  Google Scholar 

  15. Hiesinger, H. & Head, J. W. III Characteristics and origin of polygonal terrain in southern Utopia Planitia, Mars: results from Mars Orbiter Laser Altimeter and Mars Orbiter Camera data. J. Geophys. Res. 105, 11999–12022 (2000).

    Article  ADS  Google Scholar 

  16. Lane, M. D. & Christensen, P. R. Convection in a catastrophic flood deposit as the mechanism for the giant polygons on Mars. J. Geophys. Res. 105, 17617–17627 (2000).

    Article  ADS  Google Scholar 

  17. Seibert, N. M. & Kargel, J. S. Small-scale Martian polygons: liquid surface water. Geophys. Res. Lett. 28, 899–902 (2001).

    Article  ADS  CAS  Google Scholar 

  18. Strom, R. G., Croft, S. K. & Barlow, N. G. in Mars (eds Kieffer, H. H., Jakosky, B. M., Snyder, C. W. & Matthews, M. S.) 383–423 (Univ. Arizona Press, Tucson, 1992).

    Google Scholar 

  19. Schultz, P. H. & Gault, D. E. Atmospheric effects on Martian ejecta emplacement. J. Geophys. Res. 84, 7669–7667 (1979).

    Article  ADS  Google Scholar 

  20. Barlow, N. G. et al. Standardizing the nomenclature of Martian impact crater ejecta morphologies. J. Geophys. Res. 105, 26733–26738 (2000).

    Article  ADS  Google Scholar 

  21. Baker, V. R., Gulick, V. C. & Kargel, J. S. in Resources of Near-Earth Space (eds Lewis, J. S., Matthews, M. S. & Guerrieri, M. L.) 765–797 (Univ. Arizona Press, Tucson, 1993).

    Google Scholar 

  22. Chapman, M. G. et al. In Environmental Effects on Volcanic Eruptions: From Deep Oceans to Deep Space (eds Zimbelman, J. R. & Gregg, T. K. P.) 39–73 (Kluwer Academic, Plenum, New York, 2000).

    Book  Google Scholar 

  23. Hartmann, W. K. & Berman, D. C. Elysium Planitia lava flows: crater count chronology and geological implications. J. Geophys. Res. 105, 15011–15025 (2000).

    Article  ADS  Google Scholar 

  24. Burr, D. & McEwen, A. S. in Extremes of the Extremes (eds Snorrason, A. & Finnsdottir, H. P.) Int. Assoc. Sci. Hydrol. Spec. Publ. (Int. Assoc. Sci. Hydrol., in the press).

  25. Keszthelyi, L. & McEwen, A. S. Terrestrial analogs and thermal models for Martian flood lavas. J. Geophys. Res. 105, 15027–15049 (2000).

    Article  ADS  Google Scholar 

  26. Hodges, C. A. & Moore, H. J. The subglacial birth of Olympus Mons and its aureoles. J. Geophys. Res. 84, 8061–8074 (1979).

    Article  ADS  Google Scholar 

  27. Mouginis-Mark, P. J. in Lunar and Planetary Science XXIV 1021–1022 (Lunar Planet. Inst., Houston, 1993).

    Google Scholar 

  28. Moore, J. G. et al. Prodigious submarine landslides on the Hawaiian Ridge. J. Geophys. Res. 94, 17465–17484 (1989).

    Article  ADS  Google Scholar 

  29. Pieri, D. C. Geomorphology of Martian Valleys. NASA Rep. No. TM-81979 (NASA, Washington DC, 1980).

  30. Gulick, V. C. & Baker, V. R. Fluvial valleys and martian palaeoclimates. Nature 341, 514–516 (1989).

    Article  ADS  Google Scholar 

  31. Baker, V. R. et al. in Mars (eds Kieffer, H. H., Jakosky, B. M., Snyder, C. W. & Matthews, M. S.) 493–522 (Univ. Arizona Press, Tucson, 1992).

    Google Scholar 

  32. Gulick, V. C. Origin of the valley networks on Mars: a hydrological perspective. Geomorphology 37, 241–268 (2001).

    Article  ADS  Google Scholar 

  33. Laity, J. E. & Malin, M. C. Sapping processes in the development of theater-headed valley networks in the Colorado Plateau. Geol. Soc. Am. Bull. 96, 203–217 (1985).

    Article  ADS  Google Scholar 

  34. Baker, V. R. et al. in Ground-water Geomorphology: The Role of Subsurface Water in Earth-Surface Processes and Landforms (eds Higgins, C. G. & Coates, D. R.) Geol. Soc. Am. Spec. Pap. 252, 235–265 (Geol. Soc. Am., Boulder, CO, 1990).

    Google Scholar 

  35. Carr, M. H. & Clow, G. D. Martian channels and valleys: their characteristics, distribution, and age. Icarus 48, 91–117 (1981).

    Article  ADS  Google Scholar 

  36. Scott, D. H., Dohm, J. M. & Rice, J. W. Jr Map showing channels and possible paleolake basins. US Geol. Surv. Misc. Invest. Ser. MAP I-2461 (1995).

  37. Baker, V. R. & Partridge, J. Small Martian valleys: pristine and degraded morphology. J. Geophys. Res. 91, 3561–3572 (1986).

    Article  ADS  Google Scholar 

  38. Carr, M. H. & Chuang, F. C. Martian drainage densities. J. Geophys. Res. 102, 9145–9152 (1997).

    Article  ADS  Google Scholar 

  39. Carr, M. H. & Malin, M. C. Meter-scale characteristics of Martian channels and valleys. Icarus 146, 366–386 (2000).

    Article  ADS  Google Scholar 

  40. Gulick, V. C. Magmatic intrusions and a hydrothermal origin for fluvial valleys on Mars. J. Geophys. Res. 103, 19365–19387 (1998).

    Article  ADS  CAS  Google Scholar 

  41. Phillips, R. J. et al. Ancient geodynamics and global scale hydrology on Mars. Science 291, 2587–2591 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Craddock, R. A. & Maxwell, T. A. Geomorphic evolution of the Martian highlands through ancient fluvial processes. J. Geophys. Res. 98, 3453–3468 (1993).

    Article  ADS  Google Scholar 

  43. Hynek, B. M. & Phillips, R. J. Evidence for extensive denudation of the martian highlands. Geology 29, 407–410 (2001).

    Article  ADS  Google Scholar 

  44. Golombek, M. P. & Bridges, N. T. Erosion rates on Mars and implications for climate change: constraints from the Pathfinder landing site. J. Geophys. Res. 105, 1841–1853 (2000).

    Article  ADS  Google Scholar 

  45. Carr, M. H. Retention of an atmosphere on early Mars. J. Geophys. Res. 104, 21897–21909 (1999).

    Article  ADS  CAS  Google Scholar 

  46. Baker, V. R. et al. Ancient oceans, ice sheets, and the hydrological cycle on Mars. Nature 352, 589–594 (1991).

    Article  ADS  Google Scholar 

  47. Baker, V. R. & Milton, D. J. Erosion by catastrophic floods on Mars and Earth. Icarus 23, 27–41 (1974).

    Article  ADS  Google Scholar 

  48. Baker, V. R. & Nummedal, D. The Channeled Scabland (NASA Planetary Geology Program, Washington DC, 1978).

    Google Scholar 

  49. Baker, V. R. The Channels of Mars (Univ. Texas Press, Austin, 1982).

    Google Scholar 

  50. Komar, P. D. Modes of sediment transport in channelized water flows with ramifications to the erosion of the Martian outflow channels. Icarus 42, 317–329 (1980).

    Article  ADS  Google Scholar 

  51. Baker, V. R. Erosional processes in channelized water flows on Mars. J. Geophys. Res. 84, 7985–7993 (1979).

    Article  ADS  Google Scholar 

  52. Nummedal, D. & Prior, D. B. Generation of Martian chaos and channels by debris flows. Icarus 45, 77–86 (1981).

    Article  ADS  Google Scholar 

  53. Lucchitta, B. K. Antarctic ice streams and outflow channels on Mars. Geophys. Res. Lett. 28, 403–406 (2001).

    Article  ADS  Google Scholar 

  54. Baker, V. R. in Flood and Megaflood Deposits: Recent and Ancient Examples (eds Martini, I. P., Baker, V. R. & Garzon M.) Int. Assoc. Sedimentol. Spec. Publ. (Int. Assoc. Sedimentol., in the press).

  55. Broecker, W. S. & Denton, G. H. The role of ocean-atmosphere reorganizations in glacial cycles. Geochim. Cosmochim. Acta 53, 2465–2501 (1989).

    Article  ADS  CAS  Google Scholar 

  56. Dohm, J. M. et al. System of gigantic valleys northwest of Tharsis, Mars: latent catastrophic flooding, northwest watershed, and implications for northern plains ocean. Geophys. Res. Lett. 27, 3559–3562.

  57. Nelson, D. M. & Greeley, R. Geology of Xanthe Terra outflow channels and the Mars Pathfinder landing site. J. Geophys. Res. 104, 8653–8669 (1999).

    Article  ADS  Google Scholar 

  58. Rotto, S. & Tanaka, K. L. Geologic/geomorphic map of the Chryse Planitia region of Mars. US Geol. Surv. Misc. Invest. Ser. MAP I-2441 (1995).

  59. Ivanov, M. A. & Head, J. W. Chryse Planitia, Mars: topographic configuration, outflow channel continuity and sequence, and tests for hypothesized ancient bodies of water using Mars Orbiter Laser Altimeter (MOLA) data. J. Geophys. Res. 106, 3275–3295 (2001).

    Article  ADS  Google Scholar 

  60. Burr, D. M., McEwen, A. S. & Sakimoto, S. E. H. Recent aqueous floods from the Creberus Rupes, Mars. Geophys. Re. Lett. (submitted).

  61. Mouginis-Mark, P. J. Recent water release in the Tharsis region of Mars. Icarus 84, 362–373 (1990).

    Article  ADS  Google Scholar 

  62. Carr, M. H. Channels and valleys on Mars: cold climate features formed as a result of a thickening cryosphere. Planet. Space Sci. 44, 1411–1423 (1996).

    Article  ADS  CAS  Google Scholar 

  63. Carr, M. H. Martian oceans, valleys and climate. Astron. Geophys. 41, 3.20–3.26 (2000).

    Article  Google Scholar 

  64. Head, J. W. III & Wilson, L. Mars: geologic setting of magma/H2O interactions. Lunar Planet. Sci. Conf. XXXII, Abstr. 1215 〈http://www.lpi.usra.edu/meetings/lpsc2001/pdf/1215.pdf〉 (2001).

  65. Tanaka, K. L. & Chapman, M. G. The relation of catastrophic flooding of Mangala Valles, Mars, to faulting of Memnonia Fossae and Tharsis volcanism. J. Geophys. Res. 95, 14315–14323 (1990).

    Article  ADS  Google Scholar 

  66. Max, M. D. & Clifford, S. M. Initiation of Martian outflow channels: related to the dissociation of gas hydrate? Geophys. Res. Lett. 28, 1787–1790 (2001).

    Article  ADS  CAS  Google Scholar 

  67. Komatsu, G. et al. A chaotic terrain formation hypothesis: explosive outgas and outflow by dissociation of clathrate on Mars. Lunar Planet. Sci. Conf. XXXI, Abstr. 1434 〈http://www.lpi.usra.edu/meetings/lpsc2000/pdf/1434.pdf〉 (2000).

  68. Jöns, H. P. Late sedimentation and late sediments in the northern lowlands of Mars. Lunar Planet. Sci. 16, 414–415 (1985).

    ADS  Google Scholar 

  69. Lucchitta, B. K., Ferguson, H. M. & Summers, C. Sedimentary deposits in the northern lowland plains, Mars. J. Geophys. Res. 91, E116–E174 (1986).

    Article  ADS  Google Scholar 

  70. Parker, T. J., Saunders, R. S. & Shcneeberger, D. M. Transitional morphology in the west Deuteronilus Mensae region of Mars: implications for modification of the lowland/upland boundary. Icarus 82, 111–145 (1989).

    Article  ADS  Google Scholar 

  71. Head, J. W. III et al. Possible ancient oceans on Mars: evidence from Mars Orbiter Laser Altimeter Data. Science 286, 2134–2137.

  72. Parker, T. J. et al. Coastal geomorphology of the Martian northern plains. J. Geophys. Res. 98, 11061–11078 (1993).

    Article  ADS  Google Scholar 

  73. Malin, M. C. & Edgett, K. S. Oceans or seas in the Martian northern lowlands: high-resolution imaging tests of proposed coastlines. Geophys. Res. Lett. 26, 3049–3052 (1999).

    Article  ADS  Google Scholar 

  74. Tanaka, K. L. Debris flow origin for the Simud/Tiu deposit on Mars. J. Geophys. Res. 104, 8637–8652 (1999).

    Article  ADS  Google Scholar 

  75. Kargel, J. S. et al. Evidence for continental glaciation in the Martian northern plains. J. Geophys. Res. 100, 5351–5368 (1995).

    Article  ADS  Google Scholar 

  76. Clifford, S. M. & Parker, T. J. The evolution of the Martian hydrosphere: implications for the fate of a primordial ocean and the current state of the northern plains. Icarus (in the press).

  77. Cabrol, N. A. & Grin, E. A. Distribution, classification, and ages of Martian impact crater lakes. Icarus 142, 160–172 (1999).

    Article  ADS  Google Scholar 

  78. Cabrol, N. A. & Grin, E. A. The evolution of lacustrine environments on Mars: is Mars only hydrologically dormant? Icarus 149, 291–328 (2001).

    Article  ADS  CAS  Google Scholar 

  79. Ori, G. G., Marinangeli, L. & Baliva, A. Terraces and Gilbert-type deltas in crater lakes in Ismenius Lacus and Memnonia (Mars). J. Geophys. Res. 105, 17629–17641 (2000).

    Article  ADS  Google Scholar 

  80. Squyres, S. W. Urey Prize Lecture: water on Mars. Icarus 79, 229–288 (1989).

    Article  ADS  CAS  Google Scholar 

  81. Scott, D. H. & Chapman, M. G. Geologic and topographic maps of the Elysium paleolake basin, Mars. US Geol. Surv. Geol. Ser. MAP I-2397 (1995).

  82. Cabrol, N. A. et al. Hydrogeologic evolution of Gale Crater and its relevance to the exobiological exploration of Mars. Icarus 139, 235–245 (1999).

    Article  ADS  Google Scholar 

  83. Malin, M. C. & Edgett, K. S. Sedimentary rocks of early Mars. Science 290, 1927–1937 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  84. Weitz, C. M. et al. The interior layered deposits of Valles Marineris: layering, erosional processes, and age relationships. Lunar Planet. Sci. 32, Abstr. No. 1629 (2001).

  85. Lucchitta, B. K. MOC images confirm layered deposits formed within Valles Marineris, Mars. Lunar Planet. Sci. 32, Abstr. No. 1359 (2001).

  86. Malin, M. C. & Edgett, K. S. Evidence for recent groundwater seepage and surface runoff on Mars. Science 288, 2330–2335 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  87. Costard, F. et al. Debris flows on mars: Analogy with terrestrial periglacial environment and climatic implications. Lunar Planet. Sci. Conf. XXXII, Abstr. 1534 〈http://www.lpi.usra.edu/meetings/lpsc2001/pdf/1534.pdf〉 (2001).

  88. French, H. M. The Periglacial Environment (Longman, Harlow, 1996).

    Google Scholar 

  89. Musselwhite, D. S., Swindle, T. D. & Lunine, J. I. Liquid CO2 breakout and the formation of recent small gullies on Mars. Geophys. Res. Lett. 28, 1283–1286 (2001).

    Article  ADS  CAS  Google Scholar 

  90. Hoffman, N. White Mars: a new model for Mars' surface and atmosphere based on CO2 . Icarus 146, 326–342 (2000).

    Article  ADS  CAS  Google Scholar 

  91. Wilson, L. Les relations entre les processus geomorphologique et le climat moderne comme méthode de paléoclimatologie. Rev. Géogr. Physique Geol. Dynamique 11, 309–314 (1969)

    Google Scholar 

  92. Lucchitta, B. K. Ice sculpture in the Martian outflow channels. J. Geophys. Res. 87, 9951–9973 (1982).

    Article  ADS  Google Scholar 

  93. Costard, F. & Baker, V. R. Thermokarst landforms and processes in Ares Vallis, Mars. Geomorphology 37, 287–301 (2001).

    Article  ADS  Google Scholar 

  94. Kargel, J. S. & Strom, R. G. Ancient glaciation on Mars. Geology 20, 3–7 (1992).

    Article  ADS  Google Scholar 

  95. Head, J. W. III & Hallet, B. Origin of sinuous ridges in the Dorsa Argentea Formation: new observations and tests of the esker hypothesis. Lunar Planet. Sci. 32, Abstr. No. 1373 (2001).

  96. Head, J. W. III & Pratt, S. Extensive Hesperian-aged south polar ice sheet on Mars: evidence for massive melting and retreat, and lateral flow and ponding of meltwater. J. Geophys. Res. (in the press).

  97. Mangold, N. & Allemand, P. Topographic analysis of features related to ice on Mars. Geophys. Res. Lett. 28, 407–410 (2001).

    Article  ADS  Google Scholar 

  98. Colaprete, A. & Jakosky, B. M. Ice flow and rock glaciers on Mars. J. Geophys. Res. 103, 5897–5909 (1998).

    Article  ADS  CAS  Google Scholar 

  99. Clark, D. H., Steig, E. J., Potter, N. Jr & Gillespie, A. R. Genetic variability of rock glaciers. Geogr. Annls 80A, 175–182 (1998).

    Article  Google Scholar 

  100. Barsch, D. Rockglaciers (Springer, Berlin, 1996).

    Book  Google Scholar 

  101. Squyres, S. W., Clifford, S. M., Kuzmin, R. O., Zimbelman, J. R. & Costard, F. M. in Mars (eds Kieffer, H. H., Jakosky, B. M., Snyder, C. W. & Matthews, M. S.) 523–554 (Univ. Arizona Press, Tucson, 1992).

    Google Scholar 

  102. Ackert, R. P. Jr A rock glacier/debris-covered glacier at Galena Creek, Absaroka Mountains, Wyoming. Geogr. Annls 80A, 267–276 (1998).

    Article  Google Scholar 

  103. Carr, M. H. D/H on Mars: effects of floods, volcanism, impacts and polar processes. Icarus 87, 210–227 (1990).

    Article  ADS  Google Scholar 

  104. Mulvaney, R. R. et al. The transition from the last glacial period in inland and near-coastal Antarctica. Geophys. Res. Lett. 27, 2673–2676 (2000).

    Article  ADS  Google Scholar 

  105. Sugden, D. E. et al. Preservation of Miocene glacier ice in East Antarctica. Nature 376, 412–414 (1995).

    Article  ADS  CAS  Google Scholar 

  106. Crowell, J. C. Pre-Mesozoic Ice Ages: Their Bearing on Understanding the Climate System Geol. Soc. Am. Memoir 192 (Geol. Soc. Am., Boulder, CO, 1999).

    Google Scholar 

  107. Hoffman, P. F. et al. A Neoproterozoic snowball Earth. Science 281, 1342–1346 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  108. Williams, G. E. History of the Earth's obliquity. Earth-Sci. Rev. 34, 1–45 (1993).

    Article  ADS  Google Scholar 

  109. Hoffman, P. F. & Schrag, D. P. The Snowball Earth hypothesis: theory, observations, and tests. Terra Nova (in the press).

  110. Hays, J. D., Imbrie, J. & Shackleton, N. J. Variations in the Earth's orbit: pacemaker of the ice ages. Science 194, 1121–1132 (1976).

    Article  ADS  CAS  Google Scholar 

  111. Raymo, M. E. & Ruddiman, W. F. Tectonic forcing of late Cenozoic climate. Nature 359, 117–122 (1992).

    Article  ADS  CAS  Google Scholar 

  112. Touma, J. & Wisdom, J. The chaotic obliquity of Mars. Science 259, 1294–1297 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  113. Laskar, J. & Robutel, P. The chaotic deliquity of the planets. Nature 361, 608–612 (1993).

    Article  ADS  Google Scholar 

  114. Jakosky, B. M., Henderson, B. G. & Mellon, M. T. Chaotic obliquity and the nature of Martian climate. J. Geophys. Res. 100, 1579–1584 (1995).

    Article  ADS  CAS  Google Scholar 

  115. Rothschild, L. J. & Mancinelli, R. L. Life in extreme environments. Nature 409, 1092–1101 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  116. Sleep, N. H., Zahnle, K. & Neuhoff, P. S. Initiation of clement surface conditions on the earliest Earth. Proc. Natl Acad. Sci. USA (in the press).

  117. Max, M. D. & Clifford, S. M. The state, potential distribution, and biological implications of methane in the Martian crust. J. Geophys. Res. 105, 4165–4171 (2000).

    Article  ADS  CAS  Google Scholar 

  118. Pollack, J. B. et al. The case for a wet, warm climate on early Mars. Icarus 71, 203–224 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  119. Anderson, R. C. et al. Primary centers and secondary concentrations of tectonic activity through time in the western hemisphere of Mars. J. Geophys. Res. (in the press).

  120. Gulick, V. C. et al. Effects and lifetimes of ocean-induced CO2 pulses on Mars: implications for fluvial valley formation. Icarus 130, 68–86 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank many colleagues for comments and discussion useful to this review, including R. C. Anderson, D. Burr, N. Cabrol, F. M. Costard, J. M. Dohm, J. C. Ferris, E. Grin, V. C. Gulick, T. M. Hare, W. K. Hartmann, J. S. Kargel, G. Komatsu, A. S. McEwen, G. G. Ori, J. W. Rice Jr, R. G. Strom, K. L. Tanaka and J. R. Zimbelman. The entire manuscript was reviewed by J. W. Head III and by D. E. Sugden. NASA provided partial support for the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor R. Baker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, V. Water and the martian landscape. Nature 412, 228–236 (2001). https://doi.org/10.1038/35084172

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35084172

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing