Abstract
Over the past 30 years, the water-generated landforms and landscapes of Mars have been revealed in increasing detail by a succession of spacecraft missions. Recent data from the Mars Global Surveyor mission confirm the view that brief episodes of water-related activity, including glaciation, punctuated the geological history of Mars. The most recent of these episodes seems to have occurred within the past 10 million years. These new results are anomalous in regard to the prevailing view that the martian surface has been continuously extremely cold and dry, much as it is today, for the past 3.9 billion years. Interpretations of the new data are controversial, but explaining the anomalies in a consistent manner leads to potentially fruitful hypotheses for understanding the evolution of Mars in relation to Earth.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Masursky, H. An overview of geologic results from Mariner 9. J. Geophys. Res. 78, 4037–4047 (1973).
Carr, M. H. Water on Mars (Oxford Univ. Press, New York, 1996).
Malin, M. C. et al. Early views of the Martian surface from the Mars Orbiter Camera of Mars Global Surveyor. Science 279, 1681–1685 (1998).
Smith, D. E. et al. The global topography of Mars and implications for surface evolution. Science 284, 1495–1502 (1999).
Whewell, W. Philosophy of the Inductive Sciences (Parker, London, 1847).
Chamberlin, T. C. The methods of Earth-sciences. Pop. Sci. Mon. 66, 66–75 (1904).
Gilbert, G. K. The origin of hypotheses, illustrated by a discussion of a topographic problem. Science 3, 1–13 (1896).
Baker, V. R. in The Scientific Nature of Geomorphology (eds Rhoads, B. L. & Thorn, C. E.) 57–85 (Wiley, New York, 1996).
Baker, V. R. The pragmatic roots of American Quaternary geology and geomorphology. Geomorphology 16, 197–215 (1996).
Davis, W. M. The value of outrageous geological hypotheses. Science 63, 463–468 (1926).
Jakosky, B. M. & Haberle, R. M. in Mars (eds Kieffer, H. H., Jakosky, B. M., Snyder, C. W. & Matthews, M. S.) 969–1016 (Univ. Arizona Press, Tucson, 1992).
Greeley, R., Lancaster, N., Lee, S. & Thomas, P. in Mars (eds Kieffer, H. H., Jakosky, B. M., Snyder, C. W. & Matthews, M. S.) 730–766 (Univ. Arizona Press, Tucson, 1992).
Carr, M. H. & Schaber, G. G. Martian permafrost features. J. Geophys. Res. 82, 4039–4054 (1977).
Lucchitta, B. K. Mars and Earth: comparison of cold climate features. Icarus 45, 264–303 (1981).
Hiesinger, H. & Head, J. W. III Characteristics and origin of polygonal terrain in southern Utopia Planitia, Mars: results from Mars Orbiter Laser Altimeter and Mars Orbiter Camera data. J. Geophys. Res. 105, 11999–12022 (2000).
Lane, M. D. & Christensen, P. R. Convection in a catastrophic flood deposit as the mechanism for the giant polygons on Mars. J. Geophys. Res. 105, 17617–17627 (2000).
Seibert, N. M. & Kargel, J. S. Small-scale Martian polygons: liquid surface water. Geophys. Res. Lett. 28, 899–902 (2001).
Strom, R. G., Croft, S. K. & Barlow, N. G. in Mars (eds Kieffer, H. H., Jakosky, B. M., Snyder, C. W. & Matthews, M. S.) 383–423 (Univ. Arizona Press, Tucson, 1992).
Schultz, P. H. & Gault, D. E. Atmospheric effects on Martian ejecta emplacement. J. Geophys. Res. 84, 7669–7667 (1979).
Barlow, N. G. et al. Standardizing the nomenclature of Martian impact crater ejecta morphologies. J. Geophys. Res. 105, 26733–26738 (2000).
Baker, V. R., Gulick, V. C. & Kargel, J. S. in Resources of Near-Earth Space (eds Lewis, J. S., Matthews, M. S. & Guerrieri, M. L.) 765–797 (Univ. Arizona Press, Tucson, 1993).
Chapman, M. G. et al. In Environmental Effects on Volcanic Eruptions: From Deep Oceans to Deep Space (eds Zimbelman, J. R. & Gregg, T. K. P.) 39–73 (Kluwer Academic, Plenum, New York, 2000).
Hartmann, W. K. & Berman, D. C. Elysium Planitia lava flows: crater count chronology and geological implications. J. Geophys. Res. 105, 15011–15025 (2000).
Burr, D. & McEwen, A. S. in Extremes of the Extremes (eds Snorrason, A. & Finnsdottir, H. P.) Int. Assoc. Sci. Hydrol. Spec. Publ. (Int. Assoc. Sci. Hydrol., in the press).
Keszthelyi, L. & McEwen, A. S. Terrestrial analogs and thermal models for Martian flood lavas. J. Geophys. Res. 105, 15027–15049 (2000).
Hodges, C. A. & Moore, H. J. The subglacial birth of Olympus Mons and its aureoles. J. Geophys. Res. 84, 8061–8074 (1979).
Mouginis-Mark, P. J. in Lunar and Planetary Science XXIV 1021–1022 (Lunar Planet. Inst., Houston, 1993).
Moore, J. G. et al. Prodigious submarine landslides on the Hawaiian Ridge. J. Geophys. Res. 94, 17465–17484 (1989).
Pieri, D. C. Geomorphology of Martian Valleys. NASA Rep. No. TM-81979 (NASA, Washington DC, 1980).
Gulick, V. C. & Baker, V. R. Fluvial valleys and martian palaeoclimates. Nature 341, 514–516 (1989).
Baker, V. R. et al. in Mars (eds Kieffer, H. H., Jakosky, B. M., Snyder, C. W. & Matthews, M. S.) 493–522 (Univ. Arizona Press, Tucson, 1992).
Gulick, V. C. Origin of the valley networks on Mars: a hydrological perspective. Geomorphology 37, 241–268 (2001).
Laity, J. E. & Malin, M. C. Sapping processes in the development of theater-headed valley networks in the Colorado Plateau. Geol. Soc. Am. Bull. 96, 203–217 (1985).
Baker, V. R. et al. in Ground-water Geomorphology: The Role of Subsurface Water in Earth-Surface Processes and Landforms (eds Higgins, C. G. & Coates, D. R.) Geol. Soc. Am. Spec. Pap. 252, 235–265 (Geol. Soc. Am., Boulder, CO, 1990).
Carr, M. H. & Clow, G. D. Martian channels and valleys: their characteristics, distribution, and age. Icarus 48, 91–117 (1981).
Scott, D. H., Dohm, J. M. & Rice, J. W. Jr Map showing channels and possible paleolake basins. US Geol. Surv. Misc. Invest. Ser. MAP I-2461 (1995).
Baker, V. R. & Partridge, J. Small Martian valleys: pristine and degraded morphology. J. Geophys. Res. 91, 3561–3572 (1986).
Carr, M. H. & Chuang, F. C. Martian drainage densities. J. Geophys. Res. 102, 9145–9152 (1997).
Carr, M. H. & Malin, M. C. Meter-scale characteristics of Martian channels and valleys. Icarus 146, 366–386 (2000).
Gulick, V. C. Magmatic intrusions and a hydrothermal origin for fluvial valleys on Mars. J. Geophys. Res. 103, 19365–19387 (1998).
Phillips, R. J. et al. Ancient geodynamics and global scale hydrology on Mars. Science 291, 2587–2591 (2001).
Craddock, R. A. & Maxwell, T. A. Geomorphic evolution of the Martian highlands through ancient fluvial processes. J. Geophys. Res. 98, 3453–3468 (1993).
Hynek, B. M. & Phillips, R. J. Evidence for extensive denudation of the martian highlands. Geology 29, 407–410 (2001).
Golombek, M. P. & Bridges, N. T. Erosion rates on Mars and implications for climate change: constraints from the Pathfinder landing site. J. Geophys. Res. 105, 1841–1853 (2000).
Carr, M. H. Retention of an atmosphere on early Mars. J. Geophys. Res. 104, 21897–21909 (1999).
Baker, V. R. et al. Ancient oceans, ice sheets, and the hydrological cycle on Mars. Nature 352, 589–594 (1991).
Baker, V. R. & Milton, D. J. Erosion by catastrophic floods on Mars and Earth. Icarus 23, 27–41 (1974).
Baker, V. R. & Nummedal, D. The Channeled Scabland (NASA Planetary Geology Program, Washington DC, 1978).
Baker, V. R. The Channels of Mars (Univ. Texas Press, Austin, 1982).
Komar, P. D. Modes of sediment transport in channelized water flows with ramifications to the erosion of the Martian outflow channels. Icarus 42, 317–329 (1980).
Baker, V. R. Erosional processes in channelized water flows on Mars. J. Geophys. Res. 84, 7985–7993 (1979).
Nummedal, D. & Prior, D. B. Generation of Martian chaos and channels by debris flows. Icarus 45, 77–86 (1981).
Lucchitta, B. K. Antarctic ice streams and outflow channels on Mars. Geophys. Res. Lett. 28, 403–406 (2001).
Baker, V. R. in Flood and Megaflood Deposits: Recent and Ancient Examples (eds Martini, I. P., Baker, V. R. & Garzon M.) Int. Assoc. Sedimentol. Spec. Publ. (Int. Assoc. Sedimentol., in the press).
Broecker, W. S. & Denton, G. H. The role of ocean-atmosphere reorganizations in glacial cycles. Geochim. Cosmochim. Acta 53, 2465–2501 (1989).
Dohm, J. M. et al. System of gigantic valleys northwest of Tharsis, Mars: latent catastrophic flooding, northwest watershed, and implications for northern plains ocean. Geophys. Res. Lett. 27, 3559–3562.
Nelson, D. M. & Greeley, R. Geology of Xanthe Terra outflow channels and the Mars Pathfinder landing site. J. Geophys. Res. 104, 8653–8669 (1999).
Rotto, S. & Tanaka, K. L. Geologic/geomorphic map of the Chryse Planitia region of Mars. US Geol. Surv. Misc. Invest. Ser. MAP I-2441 (1995).
Ivanov, M. A. & Head, J. W. Chryse Planitia, Mars: topographic configuration, outflow channel continuity and sequence, and tests for hypothesized ancient bodies of water using Mars Orbiter Laser Altimeter (MOLA) data. J. Geophys. Res. 106, 3275–3295 (2001).
Burr, D. M., McEwen, A. S. & Sakimoto, S. E. H. Recent aqueous floods from the Creberus Rupes, Mars. Geophys. Re. Lett. (submitted).
Mouginis-Mark, P. J. Recent water release in the Tharsis region of Mars. Icarus 84, 362–373 (1990).
Carr, M. H. Channels and valleys on Mars: cold climate features formed as a result of a thickening cryosphere. Planet. Space Sci. 44, 1411–1423 (1996).
Carr, M. H. Martian oceans, valleys and climate. Astron. Geophys. 41, 3.20–3.26 (2000).
Head, J. W. III & Wilson, L. Mars: geologic setting of magma/H2O interactions. Lunar Planet. Sci. Conf. XXXII, Abstr. 1215 〈http://www.lpi.usra.edu/meetings/lpsc2001/pdf/1215.pdf〉 (2001).
Tanaka, K. L. & Chapman, M. G. The relation of catastrophic flooding of Mangala Valles, Mars, to faulting of Memnonia Fossae and Tharsis volcanism. J. Geophys. Res. 95, 14315–14323 (1990).
Max, M. D. & Clifford, S. M. Initiation of Martian outflow channels: related to the dissociation of gas hydrate? Geophys. Res. Lett. 28, 1787–1790 (2001).
Komatsu, G. et al. A chaotic terrain formation hypothesis: explosive outgas and outflow by dissociation of clathrate on Mars. Lunar Planet. Sci. Conf. XXXI, Abstr. 1434 〈http://www.lpi.usra.edu/meetings/lpsc2000/pdf/1434.pdf〉 (2000).
Jöns, H. P. Late sedimentation and late sediments in the northern lowlands of Mars. Lunar Planet. Sci. 16, 414–415 (1985).
Lucchitta, B. K., Ferguson, H. M. & Summers, C. Sedimentary deposits in the northern lowland plains, Mars. J. Geophys. Res. 91, E116–E174 (1986).
Parker, T. J., Saunders, R. S. & Shcneeberger, D. M. Transitional morphology in the west Deuteronilus Mensae region of Mars: implications for modification of the lowland/upland boundary. Icarus 82, 111–145 (1989).
Head, J. W. III et al. Possible ancient oceans on Mars: evidence from Mars Orbiter Laser Altimeter Data. Science 286, 2134–2137.
Parker, T. J. et al. Coastal geomorphology of the Martian northern plains. J. Geophys. Res. 98, 11061–11078 (1993).
Malin, M. C. & Edgett, K. S. Oceans or seas in the Martian northern lowlands: high-resolution imaging tests of proposed coastlines. Geophys. Res. Lett. 26, 3049–3052 (1999).
Tanaka, K. L. Debris flow origin for the Simud/Tiu deposit on Mars. J. Geophys. Res. 104, 8637–8652 (1999).
Kargel, J. S. et al. Evidence for continental glaciation in the Martian northern plains. J. Geophys. Res. 100, 5351–5368 (1995).
Clifford, S. M. & Parker, T. J. The evolution of the Martian hydrosphere: implications for the fate of a primordial ocean and the current state of the northern plains. Icarus (in the press).
Cabrol, N. A. & Grin, E. A. Distribution, classification, and ages of Martian impact crater lakes. Icarus 142, 160–172 (1999).
Cabrol, N. A. & Grin, E. A. The evolution of lacustrine environments on Mars: is Mars only hydrologically dormant? Icarus 149, 291–328 (2001).
Ori, G. G., Marinangeli, L. & Baliva, A. Terraces and Gilbert-type deltas in crater lakes in Ismenius Lacus and Memnonia (Mars). J. Geophys. Res. 105, 17629–17641 (2000).
Squyres, S. W. Urey Prize Lecture: water on Mars. Icarus 79, 229–288 (1989).
Scott, D. H. & Chapman, M. G. Geologic and topographic maps of the Elysium paleolake basin, Mars. US Geol. Surv. Geol. Ser. MAP I-2397 (1995).
Cabrol, N. A. et al. Hydrogeologic evolution of Gale Crater and its relevance to the exobiological exploration of Mars. Icarus 139, 235–245 (1999).
Malin, M. C. & Edgett, K. S. Sedimentary rocks of early Mars. Science 290, 1927–1937 (2000).
Weitz, C. M. et al. The interior layered deposits of Valles Marineris: layering, erosional processes, and age relationships. Lunar Planet. Sci. 32, Abstr. No. 1629 (2001).
Lucchitta, B. K. MOC images confirm layered deposits formed within Valles Marineris, Mars. Lunar Planet. Sci. 32, Abstr. No. 1359 (2001).
Malin, M. C. & Edgett, K. S. Evidence for recent groundwater seepage and surface runoff on Mars. Science 288, 2330–2335 (2000).
Costard, F. et al. Debris flows on mars: Analogy with terrestrial periglacial environment and climatic implications. Lunar Planet. Sci. Conf. XXXII, Abstr. 1534 〈http://www.lpi.usra.edu/meetings/lpsc2001/pdf/1534.pdf〉 (2001).
French, H. M. The Periglacial Environment (Longman, Harlow, 1996).
Musselwhite, D. S., Swindle, T. D. & Lunine, J. I. Liquid CO2 breakout and the formation of recent small gullies on Mars. Geophys. Res. Lett. 28, 1283–1286 (2001).
Hoffman, N. White Mars: a new model for Mars' surface and atmosphere based on CO2 . Icarus 146, 326–342 (2000).
Wilson, L. Les relations entre les processus geomorphologique et le climat moderne comme méthode de paléoclimatologie. Rev. Géogr. Physique Geol. Dynamique 11, 309–314 (1969)
Lucchitta, B. K. Ice sculpture in the Martian outflow channels. J. Geophys. Res. 87, 9951–9973 (1982).
Costard, F. & Baker, V. R. Thermokarst landforms and processes in Ares Vallis, Mars. Geomorphology 37, 287–301 (2001).
Kargel, J. S. & Strom, R. G. Ancient glaciation on Mars. Geology 20, 3–7 (1992).
Head, J. W. III & Hallet, B. Origin of sinuous ridges in the Dorsa Argentea Formation: new observations and tests of the esker hypothesis. Lunar Planet. Sci. 32, Abstr. No. 1373 (2001).
Head, J. W. III & Pratt, S. Extensive Hesperian-aged south polar ice sheet on Mars: evidence for massive melting and retreat, and lateral flow and ponding of meltwater. J. Geophys. Res. (in the press).
Mangold, N. & Allemand, P. Topographic analysis of features related to ice on Mars. Geophys. Res. Lett. 28, 407–410 (2001).
Colaprete, A. & Jakosky, B. M. Ice flow and rock glaciers on Mars. J. Geophys. Res. 103, 5897–5909 (1998).
Clark, D. H., Steig, E. J., Potter, N. Jr & Gillespie, A. R. Genetic variability of rock glaciers. Geogr. Annls 80A, 175–182 (1998).
Barsch, D. Rockglaciers (Springer, Berlin, 1996).
Squyres, S. W., Clifford, S. M., Kuzmin, R. O., Zimbelman, J. R. & Costard, F. M. in Mars (eds Kieffer, H. H., Jakosky, B. M., Snyder, C. W. & Matthews, M. S.) 523–554 (Univ. Arizona Press, Tucson, 1992).
Ackert, R. P. Jr A rock glacier/debris-covered glacier at Galena Creek, Absaroka Mountains, Wyoming. Geogr. Annls 80A, 267–276 (1998).
Carr, M. H. D/H on Mars: effects of floods, volcanism, impacts and polar processes. Icarus 87, 210–227 (1990).
Mulvaney, R. R. et al. The transition from the last glacial period in inland and near-coastal Antarctica. Geophys. Res. Lett. 27, 2673–2676 (2000).
Sugden, D. E. et al. Preservation of Miocene glacier ice in East Antarctica. Nature 376, 412–414 (1995).
Crowell, J. C. Pre-Mesozoic Ice Ages: Their Bearing on Understanding the Climate System Geol. Soc. Am. Memoir 192 (Geol. Soc. Am., Boulder, CO, 1999).
Hoffman, P. F. et al. A Neoproterozoic snowball Earth. Science 281, 1342–1346 (1998).
Williams, G. E. History of the Earth's obliquity. Earth-Sci. Rev. 34, 1–45 (1993).
Hoffman, P. F. & Schrag, D. P. The Snowball Earth hypothesis: theory, observations, and tests. Terra Nova (in the press).
Hays, J. D., Imbrie, J. & Shackleton, N. J. Variations in the Earth's orbit: pacemaker of the ice ages. Science 194, 1121–1132 (1976).
Raymo, M. E. & Ruddiman, W. F. Tectonic forcing of late Cenozoic climate. Nature 359, 117–122 (1992).
Touma, J. & Wisdom, J. The chaotic obliquity of Mars. Science 259, 1294–1297 (1993).
Laskar, J. & Robutel, P. The chaotic deliquity of the planets. Nature 361, 608–612 (1993).
Jakosky, B. M., Henderson, B. G. & Mellon, M. T. Chaotic obliquity and the nature of Martian climate. J. Geophys. Res. 100, 1579–1584 (1995).
Rothschild, L. J. & Mancinelli, R. L. Life in extreme environments. Nature 409, 1092–1101 (2001).
Sleep, N. H., Zahnle, K. & Neuhoff, P. S. Initiation of clement surface conditions on the earliest Earth. Proc. Natl Acad. Sci. USA (in the press).
Max, M. D. & Clifford, S. M. The state, potential distribution, and biological implications of methane in the Martian crust. J. Geophys. Res. 105, 4165–4171 (2000).
Pollack, J. B. et al. The case for a wet, warm climate on early Mars. Icarus 71, 203–224 (1987).
Anderson, R. C. et al. Primary centers and secondary concentrations of tectonic activity through time in the western hemisphere of Mars. J. Geophys. Res. (in the press).
Gulick, V. C. et al. Effects and lifetimes of ocean-induced CO2 pulses on Mars: implications for fluvial valley formation. Icarus 130, 68–86 (1997).
Acknowledgements
I thank many colleagues for comments and discussion useful to this review, including R. C. Anderson, D. Burr, N. Cabrol, F. M. Costard, J. M. Dohm, J. C. Ferris, E. Grin, V. C. Gulick, T. M. Hare, W. K. Hartmann, J. S. Kargel, G. Komatsu, A. S. McEwen, G. G. Ori, J. W. Rice Jr, R. G. Strom, K. L. Tanaka and J. R. Zimbelman. The entire manuscript was reviewed by J. W. Head III and by D. E. Sugden. NASA provided partial support for the research.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Baker, V. Water and the martian landscape. Nature 412, 228–236 (2001). https://doi.org/10.1038/35084172
Issue Date:
DOI: https://doi.org/10.1038/35084172
This article is cited by
-
Photochemical depletion of heavy CO isotopes in the Martian atmosphere
Nature Astronomy (2023)
-
Lacustrine sedimentation by powerful storm waves in Gale crater and its implications for a warming episode on Mars
Scientific Reports (2023)
-
Layered subsurface in Utopia Basin of Mars revealed by Zhurong rover radar
Nature (2022)
-
Isotopic fractionation of water and its photolytic products in the atmosphere of Mars
Nature Astronomy (2021)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.