Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30° N

Abstract

Evidence is growing that hydrothermal venting occurs not only along mid-ocean ridges but also on old regions of the oceanic crust away from spreading centres. Here we report the discovery of an extensive hydrothermal field at 30° N near the eastern intersection of the Mid-Atlantic Ridge and the Atlantis fracture zone. The vent field—named ‘Lost City’—is distinctly different from all other known sea-floor hydrothermal fields in that it is located on 1.5-Myr-old crust, nearly 15 km from the spreading axis, and may be driven by the heat of exothermic serpentinization reactions between sea water and mantle rocks. It is located on a dome-like massif and is dominated by steep-sided carbonate chimneys, rather than the sulphide structures typical of ‘black smoker’ hydrothermal fields. We found that vent fluids are relatively cool (40–75 °C) and alkaline (pH 9.0–9.8), supporting dense microbial communities that include anaerobic thermophiles. Because the geological characteristics of the Atlantis massif are similar to numerous areas of old crust along the Mid-Atlantic, Indian and Arctic ridges, these results indicate that a much larger portion of the oceanic crust may support hydrothermal activity and microbial life than previously thought.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The Mid-Atlantic Ridge and location of the Lost City field.
Figure 2: Hydrothermal deposits and microbial communities within the Lost City field.

References

  1. 1

    Fornari, D. J. & Embley, R. W. in Seafloor Hydrothermal Systems, Physical, Chemical, Biological, and Geological Interactions (eds Humphris, S. E., Zierenberg, R. A., Mullineaux, S. & Thomson, R. E.) 1–26 (American Geophysical Union Monograph 91, Washington DC, 1995).

    Google Scholar 

  2. 2

    Hannington, M. D., Jonasson, I. R., Herzig, P. M. & Petersen, S. in Seafloor Hydrothermal Systems, Physical, Chemical, Biological, and Geological Interactions (eds Humphris, S. E., Zierenberg, R. A., Mullineaux, S. & Thomson, R. E.) 115–157 (American Geophysical Union Monograph 91, Washington DC, 1995).

    Google Scholar 

  3. 3

    Tivey, M K., Stakes, D. S., Cook, T. L., Hannington, M. D. & Petersen, S. A model for growth of steep-sided vent structures on the Endeavour Segment of the Juan de Fuca Ridge: Results of a petrologic and geochemical study. J. Geophys. Res. 104, 22859–2283 (1999).

    ADS  CAS  Article  Google Scholar 

  4. 4

    German, C. R., Parson, L. M. & HEAT Scientific Team. Hydrothermal exploration near the Azores Triple Junction: tectonic control of venting at slow-spreading ridges? Earth Planet. Sci. Lett. 138, 93–104 (1996).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Gracia, E., Charlou, J. C., Radford-Knoery, J. & Parson, L. M. Non-transform offsets along the Mid-Atlantic Ridge south of the Azores (38° N–34° N): ultramafic exposures and hosting of hydrothermal vents. Earth Planet. Sci. Lett. 177, 89–103 (2000).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Barriga, F. J. A. S. et al. Discovery of the Saldanha Hydrothermal field on the FAMOUS Segment of the MAR (36° 30′ N). Eos 79, 67 (1998).

    Google Scholar 

  7. 7

    Cann, J. R. et al. Corrugated slip surfaces formed at ridge-transform intersections on the Mid-Atlantic Ridge. Nature 385, 329–332 (1997).

    ADS  Article  Google Scholar 

  8. 8

    Blackman, D. K., Cann, J. R., Janesen, B. & Smith, D. K. Origin of extensional core complexes: Evidence from the Mid-Atlantic Ridge at Atlantis Fracture Zone. J. Geophys. Res. 103, 21315–21333 (1998).

    ADS  Article  Google Scholar 

  9. 9

    Coleman, R. G. Petrologic and geophysical nature of serpentinites. Geol. Soc. Am. Bull. 82, 897–918 (1971).

    ADS  Article  Google Scholar 

  10. 10

    Barnes, I., Rapp, J. R., O'Neil, J. R., Sheppard, R. A. & Gude, A. J. Metamorphic assemblages and the direction of flow of metamorphic fluids in four instances of serpentinization. Contrib. Mineral. Petrol. 35, 263–276 (1972).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Fryer, P. et al. Conical Seamount: SeamarcII, ALVIN submersible and seismic reflection studies. Proc. ODP Init. Rep. 125, 69–94 (1990).

    Google Scholar 

  12. 12

    Haggerty, J. A. in Seamounts, Islands, and Atolls (eds Keating, B., Fryer, P. & Batiza, R.) 175–185 (American Geophysical Monograph Series 47, Washington DC, 1987).

    Google Scholar 

  13. 13

    Bonatti, E., Lawrence, J. R., Hamlyn, P. R. & Breger, D. Aragonite from deep sea ultramafic rocks. Geochim. Cosmochim. Acta 44, 1207–1214 (1980).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Früh-Green, G. L., Plas, A. & Lecuyer, C. Petrologic and stable isotope constraints on hydrothermal alteration and serpentinization of the EPR shallow mantle at Hess Deep (Site 895). Proc. ODP Sci. Res. 147, 255–291 (1996).

    Google Scholar 

  15. 15

    Sakai, R., Kusakabe, M., Noto, M. & Ishii, T. Origin of waters responsible for serpentinization of the Izu-Ogasawara-Mariana forearc seamounts in view of hydrogen and oxygen isotope ratios. Earth Planet. Sci. Lett. 100, 291–303 (1990).

    ADS  CAS  Article  Google Scholar 

  16. 16

    Janecky, D. R. & Seyfried, W. E. Jr Hydrothermal serpentinization of peridotite within the oceanic crust: Experimental investigations of mineralogy and major element chemistry. Geochim. Consmochim. Acta 50, 1357–1378 (1986).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Wetzel, L. R. & Shock, E. L. Distinguishing ultramafic from basalt-hosted submarine hydrothermal systems by comparing calculated vent fluid compositions. J. Geophys. Res. 105, 8319–8340 (2000).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Van Dover, C. L. in The Ecology of Deep-Sea Hydrothermal Vents 63–69 (Princeton Univ. Press, Princeton, New Jersey, 2000).

    Google Scholar 

  19. 19

    Donval, J. P. et al. High H2 and CH4 content in hydrothermal fluids from Rainbow site newly sampled at 36° 14′ N on the AMAR segment, Mid-Atlantic Ridge (diving FLORES cruise, July 1997). Comparison with other MAR sites. Eos 78, 832 (1997).

    Google Scholar 

  20. 20

    Charlou, J. L. et al. Compared geochemical signatures and the evolution of Menez Gwen (37° 50′ N) and Lucky Strike (37° 17′ N) hydrothermal fluids, south of the Azores Triple Junction on the Mid-Atlantic Ridge. Chem. Geol. 171, 49–75 (2000).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Krasnov, S. G. et al. in Hydrothermal Vents and Processes (eds Parson, L. M., Walker, C. L. & Dixon, D. R.) 43–64 (Geological Society Special Publication 87, London, 1995).

    Google Scholar 

  22. 22

    Douville, E., Charlou, J. L., Donval, J. P., Knoery, J. & Fouquet, Y. Trace elements in fluids from the new Rainbow hydrothermal field (36° 14′ N, MAR): a comparison with other Mid-Atlantic Ridge fluids. Eos 78, 832 (1997).

    Google Scholar 

  23. 23

    Fouquet, Y. Geological setting and compositions of hydrothermal sulfide deposits along the Mid-Atlantic Ridge. Volcanic control versus tectonic control of sulfide mineralization. Eos 78, 832 (1977).

    Google Scholar 

  24. 24

    Lagabrielle, Y. D., Bideau, D., Cannat, M., Karson, J. A. & Mevel, C. in Faulting and Magmatism at Mid-Ocean Ridges (eds Buck, W. R., Delaney, P. T., Karson, J. A. & Lagabrielle, Y.) 153–176 (American Geophysical Union Monograph 106, Washington, DC, 1998).

    Google Scholar 

  25. 25

    Shock, E. L. & Schulte, M. D. Organic synthesis during fluid mixing in hydrothermal systems. J. Geophys. Res. 103, 28513–28527 (1998).

    ADS  CAS  Article  Google Scholar 

  26. 26

    Allen, D. A., Berndt, M. E., Seyfried, W. E. Jr & Horita, J. Inorganic reduction of CO2 to HCOOH, CH4, and other reduced carbon compounds with application to subseafloor hydrothermal systems. Eos 79, 58–59 (1998).

    Article  Google Scholar 

  27. 27

    Berndt, M. E., Allen, D. E. & Seyfried, W. E. Jr Reduction of CO2 during serpentinization of olivine at 300 °C and 500 bar. Geology 24, 351–354 (1996).

    ADS  CAS  Article  Google Scholar 

  28. 28

    Janecky, D. R. & Seyfried, W. E. Jr Hydrothermal serpentinization of peridotite within the oceanic crust: Experimental investigations of mineralogy and major element chemistry. Geochim. Cosmochim. Acta 50, 1357–1378 (1986).

    ADS  CAS  Article  Google Scholar 

  29. 29

    Neal, C. & Stanger, G. Hydrogen generation from mantle source rocks in Oman. Earth Planet. Sci. Lett. 66, 315–320 (1983).

    ADS  CAS  Article  Google Scholar 

  30. 30

    Karson, J. A. & Lawrence, R. M. Tectonic setting of serpentinite exposures on the western median valley wall of the MARK area in the vicinity of Site 920. Proc. ODP Sci. Res. 153, 5–21 (1997).

    CAS  Google Scholar 

  31. 31

    Rona, P. A. et al. Hydrothermal circulation, serpentinization and degassing at a rift-valley fracture zone intersection: Mid-Atlantic Ridge near 15° N, 45° W. Geology 20, 783–786 (1992).

    ADS  CAS  Article  Google Scholar 

  32. 32

    Charlou, J. L. et al. Intense CH4 degassing generated by serpentinization of ultramafic rocks at the intersection of the 15° 20′ N fracture zone and the Mid-Atlantic Ridge. Geochim. Cosmochim. Acta 62, 2323–2333 (1998).

    ADS  CAS  Article  Google Scholar 

  33. 33

    Bougault, H. et al. FAMOUS and AMAR segments on the Mid-Atlantic Ridge: ubiquitous hydrothermal Mn, CH4, δ3He signals along the rift valley walls and rift offsets. Earth Planet. Sci. Lett. 161, 1–17 (1998).

    ADS  CAS  Article  Google Scholar 

  34. 34

    Schopf, J. W. Earth's Earliest Biosphere: Its Origin and Evolution (ed. Schopf, J. W.) 1–543 (Princeton Univ. Press, New Jersey, 1983).

    Google Scholar 

  35. 35

    Russell, M. J. & Hall, J. A. The emergence of life from iron monosulfide bubbles at a submarine hydrothermal redox and pH front. J. Geol. Soc. Lond. 153, 1–26 (1996).

    Article  Google Scholar 

  36. 36

    MacLeod, G., McKeown, C., Hall, H. J. & Russell, M. J. Hydrothermal and oceanic pH conditions of possible relevance to the origin of life. Orig. Life Evol. Biosph. 23, 19–41 (1994).

    ADS  Article  Google Scholar 

  37. 37

    Pace, N. R. A molecular view of microbial diversity and the biosphere. Science 276, 734–740 (1997).

    CAS  Article  Google Scholar 

  38. 38

    James, R. H., Elderfield, H. & Palmer, M. R. The chemistry of hydrothermal fluids from the Broken Spur site, 29° N Mid-Atlantic Ridge. Geochim. Cosmochim. Acta 59, 651–659 (1995).

    ADS  CAS  Article  Google Scholar 

  39. 39

    Butterfield, D. A. et al. Gradients in the composition of hydrothermal fluids from Endeavour Ridge vent field: Phase separation and brine loss. J. Geophys. Res. 99, 9561–9583 (1994).

    ADS  Article  Google Scholar 

  40. 40

    Lilley, M. D. et al. Anomalous CH4 and NH+4 concentrations at an unsedimented mid-ocean ridge hydrothermal system. Nature 364, 45–47 (1993).

    ADS  CAS  Article  Google Scholar 

  41. 41

    Von Damm, K. L. in Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions (eds Humphris, S. E., Zierenberg, R. A., Mullineaux, S. & Thomson, R. E.) 222–247 (American Geophysical Union Geophysical Monograph 91, Washington DC, 1995).

    Google Scholar 

  42. 42

    Neal, C. & Stanger, G. Calcium and magnesium hydroxide precipitation from alkaline groundwaters in Oman, and their significance to the process of serpentinization. Mineral. Mag. 48, 237–241 (1984).

    CAS  Article  Google Scholar 

  43. 43

    Seewald, J. S. & Seyfried, W. E. Jr The effect of temperature on metal mobility in subseafloor hydrothermal systems: Constraints from basalt alteration experiments. Earth Planet. Sci. Lett. 101, 388–403 (1990).

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

Shipboard party participants on cruise AT03-60 include N. Bacher, M. Basgall, D. K. Blackman, J. Cann, G. L. Frith-Green, J. S. Gee, H. Hanna, S. D. Hurst, B. E. John, J. A. Karson, D. S. Kelley, S. Lyons, J. Morgan, S. Nooner, P. Rivizzigno, D. K. Ross, G. Sasagawa and T. Schroeder. We thank the pilots, officers and crew of the RV Atlantis-Alvin for their professional service during this cruise. We are also grateful to the operators of ArgoII for their expert navigation of the camera system during the discovery exploration dive to this field. We also thank P. Hickey for piloting of Alvin, his sampling and his observation during the submersible dive. Support for this program was provided by the National Science Foundation.

Author information

Affiliations

Authors

Consortia

Corresponding author

Correspondence to Deborah S. Kelley.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kelley, D., Karson, J., Blackman, D. et al. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30° N. Nature 412, 145–149 (2001). https://doi.org/10.1038/35084000

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing