Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quantum interference of superfluid 3He

Abstract

Celebrated interference experiments have demonstrated the wave nature of light1 and electrons2, quantum interference being the manifestation of wave–particle duality. More recently, double-path interference experiments have also demonstrated the quantum-wave nature of beams of neutrons3, atoms4 and Bose–Einstein condensates5. In condensed matter systems, double-path quantum interference is observed in the d.c. superconducting quantum interference device6 (d.c. SQUID). Here we report a double-path quantum interference experiment involving a liquid: superfluid 3He. Using a geometry analogous to the superconducting d.c. SQUID, we control a quantum phase shift by using the rotation of the Earth, and find the classic interference pattern with periodicity determined by the 3He quantum of circulation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two views of our superfluid quantum interferometer.
Figure 2: The spectrum of the mass current during a 2-s interval of the data stream from the SQUID position transducer.
Figure 3: The interference pattern of a superfluid quantum interference gyroscope.

Similar content being viewed by others

References

  1. Young, T. A Course of Lectures in Natural Philosophy and the Mechanical Arts Vol. 1, 364 (London, 1845); also as facsimile edition (New York, 1971).

    Google Scholar 

  2. Davisson, C. J. Are Electrons Waves? Franklin Inst. J. 205, 597 (1928).

    Article  CAS  Google Scholar 

  3. Werner, S. A., Studenmann, J. L. & Colella, R. Effect of Earth's rotation on the quantum mechanical phase of the neutron. Phys. Rev. Lett. 42, 1103–1106 (1979).

    Article  ADS  CAS  Google Scholar 

  4. Keith, D. W., Ekstrom, C. R., Turchette, Q. A. & Pritchard, D. E. An interferometer for atoms. Phys. Rev. Lett. 66, 2693–2696 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Andrews, M. R. et al. Observation of interference between two Bose condensates. Science 275, 637–641 (1997).

    Article  CAS  Google Scholar 

  6. Barone, A. & Paterno, G. Physics and Application of the Josephson Effect (Wiley, New York, 1982).

    Book  Google Scholar 

  7. Varoquaux, E. & Avenel, O. Josephson effect and quantum phase slippage in superfluids. Phys. Rev. Lett. 60, 416–419 (1988).

    Article  ADS  Google Scholar 

  8. Pereversev, S. V., Loshak, A., Backhaus, S., Davis, J. C. & Packard, R. E. Quantum oscillations between two weakly coupled reservoirs of superfluid 3He. Nature 388, 449–451 (1997).

    Article  ADS  Google Scholar 

  9. Marchenkov, A. et al. Bi-state superfluid 3He weak links and the stability of Josephson π states. Phys. Rev. Lett. 83, 3860–3863 (1999).

    Article  ADS  CAS  Google Scholar 

  10. Packard, R. E. & Vitale, S. Principle of superfluid-helium gyroscopes. Phys. Rev. B 46, 3540–3549 (1992).

    Article  ADS  CAS  Google Scholar 

  11. Gustavson, T. L., Bouyer, P. & Kasevitch, M. A. Physical rotation measurements with an atom interferometer gyroscope. Phys. Rev. Lett. 78, 2046–2049 (1997).

    Article  ADS  CAS  Google Scholar 

  12. Stedman, G. E. Ring-laser tests of fundamental physics and geophysics. Rep. Prog. Phys. 60, 615–687 (1997).

    Article  ADS  Google Scholar 

  13. Anderson, P. W. in Progress in Low Temperature Physics (ed. Gorter, C. J.) 1–44 (North Holland, Amsterdam, 1967).

    Google Scholar 

  14. Marchenkov, A., Simmonds, R. W., Davis, J. C. & Packard, R. E. Observation of the Josephson plasma mode for a superfluid 3He weak link. Phys. Rev. B 61, 4196–4199 (2000).

    Article  ADS  CAS  Google Scholar 

  15. Schwab, K., Bruckner, N. & Packard, R. E. Detection of the Earth's rotations using superfluid phase coherence. Nature 386, 585–587 (1997).

    Article  ADS  CAS  Google Scholar 

  16. Avenel, O., Hakonen, P. & Varoquaux, E. Detection of the rotation of the Earth with a superfluid gyrometer. Phys. Rev. Lett. 78, 3602–3605 (1997).

    Article  ADS  CAS  Google Scholar 

  17. Mukharsky, Yu., Varoquaux, E. & Avenel, O. Current-phase relationship measurements in the flow of superfluid 3He through a single orifice. Physica B 280, 130–131 (2000).

    Article  ADS  Google Scholar 

  18. Mukharsky, Yu., Avenel, O. & Varoquaux, E. Rotation measurements with a superfluid 3He gyrometer. Physica B 284–288, 287–288 (2000).

    Article  ADS  Google Scholar 

  19. Rowe, C. H. et al. Design and operation of a very large ring laser gyroscope. Appl. Opt. 38, 2516–2523 (1999).

    Article  ADS  CAS  Google Scholar 

  20. Gustavson, T. L., Landragin, A. & Kasevich, M. A. Rotation sensing with a dual atom interferometer Sagnac gyroscope. Class. Quant. Gravity 17, 2385–2398 (2000).

    Article  ADS  CAS  Google Scholar 

  21. Herring, T. A. The rotation of the Earth. Rev. Geophys. Suppl. 29, 172–175 (1991).

    Article  ADS  Google Scholar 

  22. Clarke, J. in SQUID Sensors: Fundamentals, Fabrication and Applications (ed. Weinstock, H.) (Kluwer Academic, 1996).

    Google Scholar 

  23. Simmonds, R. W., Marchnkov, A., Vitale, S., Davis, J. C. & Packard, R. E. New flow dissipation mechanisms in superfluid 3He. Phys. Rev. Lett. 84, 6062–6065 (2000).

    Article  ADS  CAS  Google Scholar 

  24. Feynmann, R. P., Leighton, R. B. & Sands, M. The Feynman Lectures in Physics Vol. 3, Ch. 21 (Addison Wesley, Reading, Massachusetts, 1963).

    Google Scholar 

  25. Tilley, D. R. & Tilley, J. Superfluidity and Superconductivity 3rd edn 171 (Hilger, Bristol, 1990).

    Google Scholar 

  26. Paik, H. J. Superconducting tunable-diaphragm transducer for sensitive acceleration measurements. J. Appl. Phys. 47, 1168–1178 (1976).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank S. Vitale and K. Penanen for discussions; Y. Sato for assistance; A. Loshak for making the aperture arrays; and E. Crump, D. Mathews and C. Ku for assistance in improving noise conditions in our building. This work was supported in part by NASA, the Office of Naval Research, the National Science Foundation, and the Miller Institute for Basic Research (J.C.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. E. Packard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simmonds, R., Marchenkov, A., Hoskinson, E. et al. Quantum interference of superfluid 3He. Nature 412, 55–58 (2001). https://doi.org/10.1038/35083518

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35083518

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing