Letter | Published:

Quantum interference of superfluid 3He

Naturevolume 412pages5558 (2001) | Download Citation



Celebrated interference experiments have demonstrated the wave nature of light1 and electrons2, quantum interference being the manifestation of wave–particle duality. More recently, double-path interference experiments have also demonstrated the quantum-wave nature of beams of neutrons3, atoms4 and Bose–Einstein condensates5. In condensed matter systems, double-path quantum interference is observed in the d.c. superconducting quantum interference device6 (d.c. SQUID). Here we report a double-path quantum interference experiment involving a liquid: superfluid 3He. Using a geometry analogous to the superconducting d.c. SQUID, we control a quantum phase shift by using the rotation of the Earth, and find the classic interference pattern with periodicity determined by the 3He quantum of circulation.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Young, T. A Course of Lectures in Natural Philosophy and the Mechanical Arts Vol. 1, 364 (London, 1845); also as facsimile edition (New York, 1971).

  2. 2

    Davisson, C. J. Are Electrons Waves? Franklin Inst. J. 205, 597 (1928).

  3. 3

    Werner, S. A., Studenmann, J. L. & Colella, R. Effect of Earth's rotation on the quantum mechanical phase of the neutron. Phys. Rev. Lett. 42, 1103–1106 (1979).

  4. 4

    Keith, D. W., Ekstrom, C. R., Turchette, Q. A. & Pritchard, D. E. An interferometer for atoms. Phys. Rev. Lett. 66, 2693–2696 (1991).

  5. 5

    Andrews, M. R. et al. Observation of interference between two Bose condensates. Science 275, 637–641 (1997).

  6. 6

    Barone, A. & Paterno, G. Physics and Application of the Josephson Effect (Wiley, New York, 1982).

  7. 7

    Varoquaux, E. & Avenel, O. Josephson effect and quantum phase slippage in superfluids. Phys. Rev. Lett. 60, 416–419 (1988).

  8. 8

    Pereversev, S. V., Loshak, A., Backhaus, S., Davis, J. C. & Packard, R. E. Quantum oscillations between two weakly coupled reservoirs of superfluid 3He. Nature 388, 449–451 (1997).

  9. 9

    Marchenkov, A. et al. Bi-state superfluid 3He weak links and the stability of Josephson π states. Phys. Rev. Lett. 83, 3860–3863 (1999).

  10. 10

    Packard, R. E. & Vitale, S. Principle of superfluid-helium gyroscopes. Phys. Rev. B 46, 3540–3549 (1992).

  11. 11

    Gustavson, T. L., Bouyer, P. & Kasevitch, M. A. Physical rotation measurements with an atom interferometer gyroscope. Phys. Rev. Lett. 78, 2046–2049 (1997).

  12. 12

    Stedman, G. E. Ring-laser tests of fundamental physics and geophysics. Rep. Prog. Phys. 60, 615–687 (1997).

  13. 13

    Anderson, P. W. in Progress in Low Temperature Physics (ed. Gorter, C. J.) 1–44 (North Holland, Amsterdam, 1967).

  14. 14

    Marchenkov, A., Simmonds, R. W., Davis, J. C. & Packard, R. E. Observation of the Josephson plasma mode for a superfluid 3He weak link. Phys. Rev. B 61, 4196–4199 (2000).

  15. 15

    Schwab, K., Bruckner, N. & Packard, R. E. Detection of the Earth's rotations using superfluid phase coherence. Nature 386, 585–587 (1997).

  16. 16

    Avenel, O., Hakonen, P. & Varoquaux, E. Detection of the rotation of the Earth with a superfluid gyrometer. Phys. Rev. Lett. 78, 3602–3605 (1997).

  17. 17

    Mukharsky, Yu., Varoquaux, E. & Avenel, O. Current-phase relationship measurements in the flow of superfluid 3He through a single orifice. Physica B 280, 130–131 (2000).

  18. 18

    Mukharsky, Yu., Avenel, O. & Varoquaux, E. Rotation measurements with a superfluid 3He gyrometer. Physica B 284–288, 287–288 (2000).

  19. 19

    Rowe, C. H. et al. Design and operation of a very large ring laser gyroscope. Appl. Opt. 38, 2516–2523 (1999).

  20. 20

    Gustavson, T. L., Landragin, A. & Kasevich, M. A. Rotation sensing with a dual atom interferometer Sagnac gyroscope. Class. Quant. Gravity 17, 2385–2398 (2000).

  21. 21

    Herring, T. A. The rotation of the Earth. Rev. Geophys. Suppl. 29, 172–175 (1991).

  22. 22

    Clarke, J. in SQUID Sensors: Fundamentals, Fabrication and Applications (ed. Weinstock, H.) (Kluwer Academic, 1996).

  23. 23

    Simmonds, R. W., Marchnkov, A., Vitale, S., Davis, J. C. & Packard, R. E. New flow dissipation mechanisms in superfluid 3He. Phys. Rev. Lett. 84, 6062–6065 (2000).

  24. 24

    Feynmann, R. P., Leighton, R. B. & Sands, M. The Feynman Lectures in Physics Vol. 3, Ch. 21 (Addison Wesley, Reading, Massachusetts, 1963).

  25. 25

    Tilley, D. R. & Tilley, J. Superfluidity and Superconductivity 3rd edn 171 (Hilger, Bristol, 1990).

  26. 26

    Paik, H. J. Superconducting tunable-diaphragm transducer for sensitive acceleration measurements. J. Appl. Phys. 47, 1168–1178 (1976).

Download references


We thank S. Vitale and K. Penanen for discussions; Y. Sato for assistance; A. Loshak for making the aperture arrays; and E. Crump, D. Mathews and C. Ku for assistance in improving noise conditions in our building. This work was supported in part by NASA, the Office of Naval Research, the National Science Foundation, and the Miller Institute for Basic Research (J.C.D.).

Author information


  1. Physics Department, University of California, Berkeley, 94720, California, USA

    • R. W. Simmonds
    • , A. Marchenkov
    • , E. Hoskinson
    • , J. C. Davis
    •  & R. E. Packard


  1. Search for R. W. Simmonds in:

  2. Search for A. Marchenkov in:

  3. Search for E. Hoskinson in:

  4. Search for J. C. Davis in:

  5. Search for R. E. Packard in:

Corresponding author

Correspondence to R. E. Packard.

About this article

Publication history



Issue Date



Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.