Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A giant stream of metal-rich stars in the halo of the galaxy M31


Recent observations have revealed streams of gas and stars in the halo of the Milky Way1,2,3 that are the debris from interactions between our Galaxy and some of its dwarf companion galaxies; the Sagittarius dwarf galaxy and the Magellanic clouds. Analysis of the material has shown that much of the halo is made up of cannibalized satellite galaxies2,4, and that dark matter is distributed nearly spherically in the Milky Way. It remains unclear, however, whether cannibalized substructures are as common in the haloes of galaxies as predicted by galaxy-formation theory5. Here we report the discovery of a giant stream of metal-rich stars within the halo of the nearest large galaxy, M31 (the Andromeda galaxy). The source of this stream could be the dwarf galaxies M32 and NGC205, which are close companions of M31 and which may have lost a substantial number of stars owing to tidal interactions. The results demonstrate that the epoch of galaxy building still continues, albeit at a modest rate, and that tidal streams may be a generic feature of galaxy haloes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Surface density of red-giant branch (RGB) stars over the outer southeastern halo of M31.
Figure 2: The relation between Vi colour and i-band magnitude.


  1. 1

    Putman, M. E. et al. Tidal disruption of the Magellanic Clouds by the Milky Way. Nature 394, 752–754 (1998).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Ibata, R., Lewis, G. F., Irwin, M., Totten, E. & Quinn, T. Great circle tidal streams: evidence for a nearly spherical massive dark halo around the Milky Way. Astrophys. J. 551, 294–311 (2001).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Ibata, R., Irwin, M., Lewis, G. F. & Stolte, A. Galactic halo substructure in the Sloan Digital Sky Survey: The ancient tidal stream from the Sagittarius dwarf galaxy. Astrophys. J. 547, L133–L136 (2001).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Helmi, A., White, S. D. M., de Zeeuw, P. T. & Zhao, H. Debris streams in the solar neighbourhood as relicts from the formation of the Milky Way. Nature 402, 53–55 (1999).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Klyin, A., Gottlöber, S., Kravtsov, A. V. & Khokhlov, A. M. Galaxies in N-body simulations: Overcoming the overmerging problem. Astrophys. J. 516, 530–551 (1999).

    ADS  Article  Google Scholar 

  6. 6

    Cole, S., Aragon-Salamanca, A., Frenk, C. S., Navarro, J. F. & Zepf, S. E. A recipe for galaxy formation. Mon. Not. R. Astron. Soc. 271, 781–806 (1994).

    ADS  Article  Google Scholar 

  7. 7

    Eggen, O. J., Lynden-Bell, D. & Sandage, A. R. Evidence from the motions of old stars that the Galaxy collapsed. Astrophys. J. 136, 748–766 (1962).

    ADS  Article  Google Scholar 

  8. 8

    Shang, Z. et al. Ring structure and warp of NGC 5907: Interaction with dwarf galaxies. Astrophys. J. 504, L23–L26 (1998).

    ADS  Article  Google Scholar 

  9. 9

    Sackett, P. D., Morrison, H. L., Harding, P. & Boroson, T. A. A faint luminous halo that may trace the dark matter around spiral galaxy NGC 5907. Nature 370, 441–443 (1994).

    ADS  Article  Google Scholar 

  10. 10

    Stanek, K. Z. & Garnavich, P. M. Distance to M31 with the Hubble Space Telescope and HIPPARCOS red clump stars. Astrophys. J. 503, L131–L134 (1998).

    ADS  Article  Google Scholar 

  11. 11

    Irwin, M. & Lewis, J. INT WFS pipeline processing. New Astron. Rev. 45, 105–110 (2001).

    ADS  Article  Google Scholar 

  12. 12

    Holland, S., Fahlman, G. G. & Richer, H. B. Deep HST V- and I-band observations of the halo of M31: Evidence for multiple stellar populations. Astron. J. 112, 1035–1045 (1996).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Rich, R. M., Mighell, K. J., Freedman, W. L. & Neill, J. D. Local Group populations with the Hubble Space Telescope. I. The M31 globular cluster G1=Mayall II. Astron. J. 111, 768–776 (1996).

    ADS  Article  Google Scholar 

  14. 14

    Reitzel, D. B., Guhathakurta, P. & Gould, A. Isolating red giant stars in M31's elusive outer spheroid. Astron. J. 116, 707–722 (1998).

    ADS  Article  Google Scholar 

  15. 15

    Walterbos, R. A. M. & Kennicutt, R. C. Multi-color photographic surface photometry of the Andromeda galaxy. Astron. Astrophys. Suppl. 69, 311–332 (1987).

    ADS  CAS  Google Scholar 

  16. 16

    Innanen, K. A., Kamper, K. W., van den Bergh, S. & Papp, K. A. The optical warp of M31. Astrophys. J. 254, 515–516 (1982).

    ADS  Article  Google Scholar 

  17. 17

    Durrell, P. R., Harris, W. E., Pritchet, C. J. & Davidge, T. Photometry of the outer halo of M31. Am. Astron. Soc. Meeting 195, 4.04 (1999).

    Google Scholar 

  18. 18

    Ferguson, A. M. N., Gallagher, J. S. & Wyse, R. F. G. The extreme outer regions of disk galaxies. I. Chemical abundances of H II regions. Astron. J. 116, 673–690 (1998).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Lee, M. G. Stellar population is the central region of the dwarf elliptical galaxy NGC 205. Astron. J. 112, 1438–1449 (1996).

    ADS  Article  Google Scholar 

  20. 20

    Young, L. M. & Lo, K. Y. The neutral interstellar medium in nearby dwarf galaxies. II. NGC 185, NGC 205, and NGC 147. Astrophys. J. 476, 127–143 (1997).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Hodge, P. W. The structure and content of NGC 205. Astrophys. J. 182, 671–696 (1973).

    ADS  Article  Google Scholar 

  22. 22

    Bender, R., Paquet, A. & Nieto, J. Internal stellar kinematics of three dwarf ellipticals in the Local Group. Astron. Astrophys. 246, 349–353 (1991).

    ADS  Google Scholar 

  23. 23

    Welch, G. A., Sage, L. J. & Mitchell, G. F. The puzzling features of the interstellar medium in NGC 205. Astrophys. J. 499, 209–220 (1998).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Freedman, W. L. Stellar content of nearby galaxies. II—the Local Group dwarf elliptical galaxy M32. Astron. J. 98, 1285–1304 (1989).

    ADS  Article  Google Scholar 

  25. 25

    Davidge, T. J. The evolved red stellar content of M32. Publ. Astron. Soc. Pacif. 112, 1177–1187 (2000).

    ADS  Article  Google Scholar 

  26. 26

    Grillmair, C. J. et al. Hubble Space Telescope observations of M32: The color-magnitude diagram. Astron. J. 112, 1975–1987 (1996).

    ADS  CAS  Article  Google Scholar 

  27. 27

    Johnston, K. V., Spergel, D. N. & Hernquist, L. The disruption of the Sagittarius dwarf galaxy. Astrophys. J. 451, 598–606 (1995).

    ADS  Article  Google Scholar 

  28. 28

    Ibata, R. A. & Lewis, G. F. Galactic indigestion: Numerical simulations of the Milky Way's closest neighbor. Astrophys. J. 500, 575–590 (1998).

    ADS  Article  Google Scholar 

  29. 29

    Schwarzschild, M. Mass distribution and mass-luminosity ratio in galaxies. Astron. J. 59, 273–284 (1954).

    ADS  Article  Google Scholar 

  30. 30

    Ibata, R. A. & Razoumov, A. O. Archer of the Galactic disk? The effect on the outer HI disk of the Milky Way of collisional encounters with the Sagittarius dwarf galaxy. Astron. Astrophys. 336, 130–136 (1998).

    ADS  Google Scholar 

Download references


This paper is based on observations made with the Isaac Newton Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias.

Author information



Corresponding author

Correspondence to Rodrigo Ibata.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ibata, R., Irwin, M., Lewis, G. et al. A giant stream of metal-rich stars in the halo of the galaxy M31. Nature 412, 49–52 (2001).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing