Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Single neurons in prefrontal cortex encode abstract rules

Abstract

The ability to abstract principles or rules from direct experience allows behaviour to extend beyond specific circumstances to general situations. For example, we learn the ‘rules’ for restaurant dining from specific experiences and can then apply them in new restaurants. The use of such rules is thought to depend on the prefrontal cortex (PFC) because its damage often results in difficulty in following rules1. Here we explore its neural basis by recording from single neurons in the PFC of monkeys trained to use two abstract rules. They were required to indicate whether two successively presented pictures were the same or different depending on which rule was currently in effect. The monkeys performed this task with new pictures, thus showing that they had learned two general principles that could be applied to stimuli that they had not yet experienced. The most prevalent neuronal activity observed in the PFC reflected the coding of these abstract rules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The behavioural task.
Figure 2: A neuron exhibiting rule selectivity.
Figure 3: Distribution of the magnitude of rule effect.
Figure 4: Location of neurons showing rule or object selectivity in either the delay or sample.

Similar content being viewed by others

References

  1. Milner, B. Effects of different brain lesions on card sorting. Arch. Neurol. 9, 100–110 (1963).

    Article  Google Scholar 

  2. Fuster, J. M. The Prefrontal Cortex: Anatomy, Physiology and Neuropsychology of the Frontal Lobe (Lippincott, Williams & Wilkins, Philadelphia, 1997).

    Google Scholar 

  3. Watanabe, M. Reward expectancy in primate prefrontal neurons. Nature 382, 629–632 (1996).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  4. Rao, S. C., Rainer, G. & Miller, E. K. Integration of what and where in the primate prefrontal cortex. Science 276, 821–824 (1997).

    Article  CAS  Google Scholar 

  5. Fuster, J. M., Bodner, M. & Kroger, J. K. Cross-modal and cross-temporal association in neurons of frontal cortex. Nature 405, 347–351 (2000).

    Article  ADS  CAS  Google Scholar 

  6. Fuster, J. M. Unit activity in prefrontal cortex during delayed-response performance: neuronal correlates of transient memory. J. Neurophysiol. 36, 61–78 (1973).

    Article  CAS  Google Scholar 

  7. di Pellegrino, G. & Wise, S. P. Visuospatial versus visuomotor activity in the premotor and prefrontal cortex of a primate. J. Neurosci. 13, 1227–1243 (1993).

    Article  CAS  Google Scholar 

  8. Asaad, W. F., Rainer, G. & Miller, E. K. Neural activity in the primate prefrontal cortex during associative learning. Neuron 21, 1399–1407 (1998).

    Article  CAS  Google Scholar 

  9. Goldman-Rakic, P. C. Cellular basis of working memory. Neuron 14, 477–485 (1995).

    Article  CAS  Google Scholar 

  10. Leon, M. I. & Shadlen, M. N. Effect of expected reward magnitude on the response of neurons in the dorsolateral prefrontal cortex of the macaque. Neuron 24, 415–425 (1999).

    Article  CAS  Google Scholar 

  11. Rainer, G., Rao, S. C. & Miller, E. K. Prospective coding for objects in primate prefrontal cortex. J. Neurosci. 19, 5493–5505 (1999).

    Article  CAS  Google Scholar 

  12. Tremblay, L. & Shultz, W. Relative reward preference in primate orbitofrontal cortex. Nature 398, 704–708 (1999).

    Article  ADS  CAS  Google Scholar 

  13. Rolls, E. T., Yaxley, S. & Sienkiewicz, Z. J. Gustatory responses of single neurons in the caudolateral orbitofrontal cortex of the macaque monkey. J. Neurophysiol. 64, 1055–1066 (1990).

    Article  CAS  Google Scholar 

  14. Rainer, G., Asaad, W. F. & Miller, E. K. Selective representation of relevant information by neurons in the primate prefrontal cortex. Nature 393, 577–579 (1998).

    Article  ADS  CAS  Google Scholar 

  15. Wise, S. P., Murray, E. A. & Gerfen, C. R. The frontal cortex-basal ganglia system in primates. Crit. Rev. Neurobiol. 10, 317–356 (1996).

    Article  CAS  Google Scholar 

  16. Miller, E. K. The prefrontal cortex: complex neural properties for complex behavior. Neuron 22, 15–17 (1999).

    Article  CAS  Google Scholar 

  17. Hoshi, E., Shima, K. & Tanji, J. Task-dependent selectivity of movement-related neuronal activity in the primate prefrontal cortex. J. Neurophysiol. 80, 3392–3397 (1998).

    Article  CAS  Google Scholar 

  18. White, I. M. & Wise, S. P. Rule-dependent neuronal activity in the prefrontal cortex. Exp. Brain Res. 126, 315–335 (1999).

    Article  CAS  Google Scholar 

  19. Asaad, W. F., Rainer, G. & Miller, E. K. Task-specific neural activity in the primate prefrontal cortex. J. Neurophysical. 84, 451–459 (2000).

    Article  CAS  Google Scholar 

  20. Freedman, D. J., Riesenhuber, M., Poggio, T. & Miller, E. K. Categorical representation of visual stimuli in the primate prefrontal cortex. Science 291, 312–316 (2001).

    Article  ADS  CAS  Google Scholar 

  21. Fuster, J. M. & Alexander, G. E. Neuron activity related to short-term memory. Science 173, 652–654 (1971).

    Article  ADS  CAS  Google Scholar 

  22. Niki, H. Prefrontal unit activity during delayed alternation in the monkey. II. Relation to absolute versus relative direction of response. Brain Res. 68, 197–204 (1974).

    Article  CAS  Google Scholar 

  23. Funahashi, S., Bruce, C. J. & Goldman-Rakic, P. S. Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. J. Neurophysiol. 61, 331–349 (1989).

    Article  CAS  Google Scholar 

  24. Miller, E. K., Erickson, C. A. & Desimone, R. Neural mechanisms of visual working memory in prefrontal cortex of the macaque. J. Neurosci. 16, 5154–5167 (1996).

    Article  CAS  Google Scholar 

  25. Rolls, E. T. The orbitofrontal cortex and reward. Cereb. Cortex 10, 284–294 (2000).

    Article  CAS  Google Scholar 

  26. Roberts, A. C. & Wallis, J. D. Inhibitory control and affective processing in the prefrontal cortex: neuropsychological studies in the common marmoset. Cereb. Cortex 10, 252–262 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. Asaad, D. Freedman, C. Kiddoo, M. Warden and M. Wicherski for valuable comments. This work was supported by a NINDS grant, a NIMH Conti Center grant, the RIKEN-MIT Neuroscience Research Center and the Class of 1956 Chair (E.K.M.). J.D.W. was supported by the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Earl K. Miller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wallis, J., Anderson, K. & Miller, E. Single neurons in prefrontal cortex encode abstract rules. Nature 411, 953–956 (2001). https://doi.org/10.1038/35082081

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35082081

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing