Abstract
Our current understanding of spatial behaviour and parietal lobe function is largely based on the belief that spatial neglect in humans (a lack of awareness of space on the side of the body contralateral to a brain injury) is typically associated with lesions of the posterior parietal lobe. However, in monkeys, this disorder is observed after lesions of the superior temporal cortex1, a puzzling discrepancy between the species. Here we show that, contrary to the widely accepted view, the superior temporal cortex is the neural substrate of spatial neglect in humans, as it is in monkeys. Unlike the monkey brain, spatial awareness in humans is a function largely confined to the right superior temporal cortex, a location topographically reminiscent of that for language on the left2. Hence, the decisive phylogenetic transition from monkey to human brain seems to be a restriction of a formerly bilateral function to the right side, rather than a shift from the temporal to the parietal lobe. One may speculate that this lateralization of spatial awareness parallels the emergence of an elaborate representation for language on the left side.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Watson, R. T., Valenstein, E., Day, A. & Heilman, K. M. Posterior neocortical systems subserving awareness and neglect. Arch. Neurol. 51, 1014–1021 (1994).
Binder, J. The new neuroanatomy of speech perception. Brain 123, 2371–2372 (2000).
Vallar, G. & Perani, D. The anatomy of unilateral neglect after right-hemisphere stroke lesions. A clinical/CT-scan correlation study in man. Neuropsychologia 24, 609–622 (1986).
Heilman, K. M., Watson, R. T., Valenstein, E. & Damasio, A. R. in Localization in Neuropsychology (ed. Kertesz, A.) 471–492 (Academic, New York, 1983).
Samuelsson, H., Jensen, C., Ekholm, S., Naver, H. & Blomstrand, C. Anatomical and neurological correlates of acute and chronic visuospatial neglect following right hemisphere stroke. Cortex 33, 271–285 (1997).
Perenin, M. T. in Parietal Lobe Contributions to Orientation in 3D Space (eds Thier, P. & Karnath, H.-O.) 289–308 (Springer, Heidelberg, 1997).
Leibovitch, F. S. et al. Brain–behavior correlations in hemispatial neglect using CT and SPECT: the Sunnybrook Stroke Study. Neurology 50, 901–908 (1998).
Leibovitch, F. S. et al. Brain SPECT imaging and left hemispatial neglect covaried using partial least squares: the Sunnybrook Stroke Study. Hum. Brain Mapp. 7, 244–253 (1999).
Ettlinger, G. & Kalsbeck, J. E. Changes in tactile discrimination and in visual reaching after successive and simultaneous bilateral posterior parietal ablations in the monkey. J. Neurol. Neurosurg. Psychiatry 25, 256–268 (1962).
Lamotte, R. H. & Acuna, C. Deficits in accuracy of reaching after removal of posterior parietal cortex in monkeys. Brain Res. 139, 309–326 (1978).
Faugier-Grimaud, S., Frenois, C. & Stein, D. G. Effects of posterior parietal lesions on visually guided behavior in monkeys. Neuropsychologia 16, 151–168 (1978).
Lynch, J. C. & McLaren, J. W. Deficits of visual attention and saccadic eye movments after lesions of parietooccipital cortex in monkeys. J. Neurophysiol. 61, 74–90 (1989).
Gaffan, D. & Hornak, J. Visual neglect in the monkey. Representation and disconnection. Brain 120, 1647–1657 (1997).
Damasio, A. R., Damasio, H. & Chui, H. C. Neglect following damage to frontal lobe or basal ganglia. Neuropsychologia 18, 123–132 (1980).
Motomura, N. et al. Unilateral spatial neglect due to hemorrhage in the thalamic region. Acta Neurol. Scand. 74, 190–194 (1986).
Talairach, J. & Tournoux, P. Co-planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System—an Approach to Cerebral Imaging. (Thieme, New York, 1988).
Rorden, C. & Brett, M. Stereotaxic display of brain lesions. Behav. Neurol. (in the press).
Ungerleider, L. G. & Mishkin, M. in Analysis of Visual Behavior (eds Ingle, D. J., Goodale, M. A. & Mansfield, R. J. W.) 549–586 (MIT Press, Cambridge, Massachusetts, 1982).
Jones, E. G. & Powell, T. P. S. An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93, 793–820 (1970).
Seltzer, B. & Pandya, D. N. Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey. Brain Res. 149, 1–24 (1978).
Bruce, C., Desimone, R. & Gross, C. G. Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. J. Neurophysiol. 46, 369–384 (1981).
Felleman, D. J. & Van Essen, D. C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).
Luh, K. E., Butter, C. M. & Buchtel, H. A. Impairments in orienting to visual stimuli in monkeys following unilateral lesions of the superior sulcal polysensory cortex. Neuropsychologia 24, 461–470 (1986).
Mesulam, M.-M. Spatial attention and neglect: parietal, frontal and cingulate contributions to the mental representation and attentional targeting of salient extrapersonal events. Phil. Trans. R. Soc. Lond. B 354, 1325–1346 (1999).
Darling, W. G., Rizzo, M. & Butler, A. J. Disordered sensorimotor transformations for reaching following posterior cortical lesions. Neuropsychologia 39, 237–254 (2001).
Weintraub, S. & Mesulam, M.-M. in Principles of Behavioral Neurology (ed. Mesulam, M.-M.) 71–123 (Davis, Philadelphia, 1985).
Gauthier, L., Dehaut, F. & Joanette, Y. The bells test: a quantitative and qualitative test for visual neglect. Int. J. Clin. Neuropsychol. 11, 49–54 (1989).
Tham, K. & Tegnér, R. The baking tray task: a test of spatial neglect. Neuropsychol. Rehab. 6, 19–25 (1996).
Acknowledgements
This work was supported by grants from the Deutsche Forschungsgemeinschaft and the Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie awarded to H.-O.K. We thank M. Niemeier, L. Johannsen and U. Zimmer for support with the neuropsychological testing of the patients; P. Thier for discussion and suggestions for the manuscript; U. Amann for help in the tomography archives; and C. Rorden for developing the MRIcro software.
Author information
Authors and Affiliations
Corresponding author
Supplementary Information
Rights and permissions
About this article
Cite this article
Karnath, HO., Ferber, S. & Himmelbach, M. Spatial awareness is a function of the temporal not the posterior parietal lobe. Nature 411, 950–953 (2001). https://doi.org/10.1038/35082075
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/35082075
This article is cited by
-
Altered fractional amplitude of low-frequency fluctuations in the superior temporal gyrus: a resting-state fMRI study in anxious depression
BMC Psychiatry (2023)
-
Dispositional empathy predicts primary somatosensory cortex activity while receiving touch by a hand
Scientific Reports (2021)
-
The neural basis underlying impaired attentional control in problematic smartphone users
Translational Psychiatry (2021)
-
The Ties that Bind: Agnosia, Neglect and Selective Attention to Visual Scale
Current Neurology and Neuroscience Reports (2021)
-
Brain disconnections link structural connectivity with function and behaviour
Nature Communications (2020)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.