Letter | Published:

Interplay of magnetism and high-Tc superconductivity at individual Ni impurity atoms in Bi2Sr2CaCu2O8+δ

Naturevolume 411pages920924 (2001) | Download Citation

Subjects

Abstract

Magnetic interactions and magnetic impurities are destructive to superconductivity in conventional superconductors1. By contrast, in some unconventional macroscopic quantum systems (such as superfluid 3He and superconducting UGe2), the superconductivity (or superfluidity) is actually mediated by magnetic interactions. A magnetic mechanism has also been proposed for high-temperature superconductivity2,3,4,5,6. Within this context, the fact that magnetic Ni impurity atoms have a weaker effect on superconductivity than non-magnetic Zn atoms in the high-Tc superconductors has been put forward as evidence supporting a magnetic mechanism5,6. Here we use scanning tunnelling microscopy to determine directly the influence of individual Ni atoms on the local electronic structure of Bi2Sr2CaCu2O8+δ. At each Ni site we observe two d-wave impurity states7,8 of apparently opposite spin polarization, whose existence indicates that Ni retains a magnetic moment in the superconducting state. However, analysis of the impurity-state energies shows that quasiparticle scattering at Ni is predominantly non-magnetic. Furthermore, we show that the superconducting energy gap and correlations are unimpaired at Ni. This is in strong contrast to the effects of non-magnetic Zn impurities, which locally destroy superconductivity9. These results are consistent with predictions for impurity atom phenomena5,6 derived from a magnetic mechanism.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Abrikosov, A. A. & Gorkov, L. P. Contribution to the theory of superconducting alloys with paramagnetic impurities. Sov. Phys. JETP 12, 1243–1253 (1961).

  2. 2

    Monthoux, P., Balatsky, A. V. & Pines, D. Weak-coupling theory of high-temperature superconductivity in the antiferromagnetically correlated copper oxides. Phys. Rev. B 46, 14803–14817 (1992).

  3. 3

    Moriya, T., Takehashi, Y. & Ueda, K. Antiferromagnetic spin fluctuations and superconductivity in two-dimensional metals - a possible model for high TC oxides. J. Phys. Soc. Jpn 59, 2905–2915 (1990).

  4. 4

    Bickers, N. E., Scalapino, D. J. & White, S. R. Conserving approximations for strongly correlated electron systems: Bethe-Salpeter equation and dynamics for the two-dimensional Hubbard model. Phys. Rev. Lett. 62, 961–964 (1989).

  5. 5

    Monthoux, P. & Pines, D. Spin-fluctuation-induced superconductivity and normal-state properties of YBa2Cu3O7. Phys. Rev. B 49, 4261–4278 (1994).

  6. 6

    Pines, D. Understanding high temperature superconductors: progress and prospects. Physica C 282–287, 273–278 (1997).

  7. 7

    Balatsky, A. V., Salkola, M. I. & Rosengren, A. Impurity-induced virtual bound states in d-wave superconductors. Phys. Rev. B 51, 15547–15551 (1995).

  8. 8

    Salkola, M. I., Balatsky, A. V. & Schrieffer, J. R. Spectral properties of quasiparticle excitations induced by magnetic moments in superconductors. Phys. Rev. B 55, 12648–12661 (1997).

  9. 9

    Pan, S. H. et al. Imaging the effects of individual zinc impurity atoms on superconductivity in Bi2Sr2CaCu2O8+δ. Nature 403, 746–750 (2000).

  10. 10

    Mendels, P. et al. Macroscopic magnetic properties of Ni and Zn substituted YBa2Cu3Ox. Physica C 235/240, 1595–1596 (1994).

  11. 11

    Salkola, M. I., Balatsky, A. V. & Scalapino, D. J. Theory of scanning tunneling microscopy probe of impurity states in a d-wave superconductor. Phys. Rev. Lett. 77, 1841–1844 (1996).

  12. 12

    Flatté, M. E. & Byers, J. M. Impurity effects on quasiparticle c-axis planar tunneling and STM spectra in high-Tc cuprates. Phys. Rev. Lett. 80, 4546–4549 (1998).

  13. 13

    Tsuchiura, H., Tanaka, Y., Ogata, M. & Kashiwaya, S. Local density of states around a magnetic impurity in high-TC superconductors based on the t-J model. Phys. Rev. Lett. 84, 3165–3168 (2000).

  14. 14

    Flatté, M. E. Quasiparticle resonant states as a probe of short-range electronic structure and Andreév coherence. Phys. Rev. B 61, R14920–14923 (2000).

  15. 15

    Haas, S. & Maki, K. Quasiparticle bound states around impurities in d x 2 − y 2 -wave superconductors. Phys. Rev. Lett. 85, 2172–2175 (2000).

  16. 16

    Martin, I., Balatsky, A. V. & Zaanen, J. Impurity states and interlayer tunneling in high temperature superconductors. Preprint cond-mat/0012446 at <xxx.lanl.gov> (2000).

  17. 17

    Zhang, G.-M., Hu, H. & Yu, L. Marginal Fermi liquid resonance induced by quantum magnetic impurity in d-wave superconductors. Phys. Rev. Lett. 86, 704–707 (2001).

  18. 18

    Yazdani, A., Howald, C. M., Lutz, C. P., Kapitulnik, A. & Eigler, D. M. Impurity-induced bound excitations on the surface of Bi2Sr2CaCu2O8. Phys. Rev. Lett. 83, 176–179 (1999).

  19. 19

    Yazdani, A., Jones, B. A., Lutz, C. P., Crommie, M. F. & Eigler, D. M. Probing the local effects of magnetic impurities on superconductivity. Science 275, 1767–1770 (1997).

  20. 20

    Flatté, M. E. & Byers, J. M. Local electronic structure of a single magnetic impurity in a superconductor. Phys. Rev. Lett. 78, 3761–3764 (1997).

  21. 21

    Maeda, A., Yabe, T., Takebayashi, S., Hase, M. & Uchinokura, K. Substitution of 3d metals for Cu in Bi2(Sr0.6Ca0.4)3Cu2Oy. Phys. Rev. B 41, 4112–4117 (1990).

  22. 22

    Kuo, Y. K. et al. Effect of magnetic and nonmagnetic impurities (Ni,Zn) substitution for Cu in Bi2(SrCa)2+n(Cu1-xMx)1+nOy whiskers. Phys. Rev. B 56, 6201–6206 (1997).

  23. 23

    Bonn, D. A. et al. Comparison of the influence of Ni and Zn impurities on the electromagnetic properties of YBa2Cu3O6.95. Phys. Rev. B 50, 4051–4063 (1994).

  24. 24

    Ishida, K. et al. Cu NMR and NQR studies of impurities-doped YBa2(Cu1-xMx)3O7 (M=Zn and Ni). J. Phys. Soc. Jpn 62, 2803–2818 (1993).

  25. 25

    Tokunaga, Y., Ishida, K., Kitaoka, Y. & Asayama, K. Novel relation between spin-fluctuation and superconductivity in Ni substituted high-TC cuprate YBa2Cu3O7: Cu NQR study. Solid State Comm. 103, 43–47 (1997).

  26. 26

    Mahajan, A. V., Alloul, H., Collin, G. & Marucco, J. F. 89Y NMR probe of Zn induced local moments in YBa2(Cu1-yZny)3O6+x. Phys. Rev. Lett. 72, 3100–3103 (1994).

  27. 27

    Bobroff, J. et al. Spinless impurities in high-TC cuprates: Kondo-like behavior. Phys. Rev. Lett. 83, 4381–4384 (1999).

  28. 28

    Bobroff, J. et al. Persistence of Li induced Kondo moments in the superconducting state of cuprates. Phys. Rev. Lett. 86, 4116–4119 (2001).

  29. 29

    Williams, G. V. M., Tallon, J. L. & Dupree, R. NMR study of magnetic and non-magnetic impurities in YBa2Cu4O8. Phys. Rev. B 61, 4319–4325 (2000).

  30. 30

    Julien, M.-H. et al. 63Cu NMR evidence for enhanced antiferromagnetic correlations around Zn impurities in YBa2Cu3O6.7. Phys. Rev. Lett. 84, 3422–3425 (2000).

  31. 31

    Sidis, Y. et al. Quantum impurities and the neutron resonance peak in YBa2Cu3O7: Ni versus Zn. Phys. Rev. Lett. 84, 5900–5903 (2000).

  32. 32

    Bernhard, C. et al. Suppression of the superconducting condensate in the high-TC cuprates by Zn substitution and overdoping: Evidence for an unconventional pairing state. Phys. Rev. Lett. 77, 2304–2307 (1996).

Download references

Acknowledgements

We acknowledge H. Alloul, P. W. Anderson, A. V. Balatsky, D. Bonn, M. Flatté, M. Franz, D.-H. Lee, K. Maki, I. Martin, P. Monthoux, A. Mourachkine, D. Pines, D. Rokhsar, S. Sachdev, D. J. Scalapino and A. Yazdani for conversations and communications, and J. E. Hoffman for help with data analysis. Support was from the Office of Naval Research, the Department of Energy through an LDRD from LBNL, the UCDRD Program, Grant-in-Aid for Scientific Research on Priority Area (Japan), a COE Grant from the Ministry of Education, Japan, the Miller Inst. for Basic Research (J.C.D.), and by the IBM Graduate Fellowship Program (K.M.L.).

Author information

Affiliations

  1. Department of Physics, University of California, Berkeley, 94720, California, USA

    • E. W. Hudson
    • , K. M. Lang
    • , V. Madhavan
    • , S. H. Pan
    •  & J. C. Davis
  2. National Institute of Standards and Technology, Gaithersburg, 20899, Maryland, USA

    • E. W. Hudson
  3. Department of Physics, Boston University, Boston, 02215, Massachusetts, USA

    • S. H. Pan
  4. Department of Superconductivity, University of Tokyo, Yayoi, 113-8656, Bunkyo-ku, Tokyo, 2-11-16, Japan

    • H. Eisaki
    •  & S. Uchida
  5. Department of Applied Physics, Stanford University, Stanford, 94205-4060, California, USA

    • H. Eisaki

Authors

  1. Search for E. W. Hudson in:

  2. Search for K. M. Lang in:

  3. Search for V. Madhavan in:

  4. Search for S. H. Pan in:

  5. Search for H. Eisaki in:

  6. Search for S. Uchida in:

  7. Search for J. C. Davis in:

Corresponding author

Correspondence to J. C. Davis.

About this article

Publication history

Received

Accepted

Issue Date

DOI

https://doi.org/10.1038/35082019

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.