Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution

Abstract

Life on Earth depends on photosynthesis, the conversion of light energy from the Sun to chemical energy. In plants, green algae and cyanobacteria, this process is driven by the cooperation of two large protein–cofactor complexes, photosystems I and II, which are located in the thylakoid photosynthetic membranes. The crystal structure of photosystem I from the thermophilic cyanobacterium Synechococcus elongatus described here provides a picture at atomic detail of 12 protein subunits and 127 cofactors comprising 96 chlorophylls, 2 phylloquinones, 3 Fe4S4 clusters, 22 carotenoids, 4 lipids, a putative Ca2+ ion and 201 water molecules. The structural information on the proteins and cofactors and their interactions provides a basis for understanding how the high efficiency of photosystem I in light capturing and electron transfer is achieved.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural model of PS I trimer at 2.5 Å resolution.
Figure 2: Cofactors of the electron transfer chain (ETC) and of PsaC.
Figure 3: Local environment of P700.
Figure 4: Local environment of membrane-intrinsic cofactors of the electron transfer chain.
Figure 5: Spatial organization of the cofactors of the ETC and the antenna system in one monomer of PSI.

Similar content being viewed by others

References

  1. Nitschke, W. & Rutherford, A. W. Photosynthetic reaction centres: variations on a common structural theme? Trends Biochem. Sci. 16, 241–245 (1991).

    CAS  PubMed  Google Scholar 

  2. Lancaster, C. R. D., Bibikova, M. V., Sabatino, P., Oesterhelt, D. & Michel, H. Structural basis of the drastically increased initial electron transfer rate in the reaction center from a Rhodopseudomonas viridis mutant described at 2.00-Å resolution. J. Biol. Chem. 275, 39364–39368 (2000).

    CAS  PubMed  Google Scholar 

  3. Zouni, A. et al. Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409, 739–743 (2001).

    ADS  CAS  PubMed  Google Scholar 

  4. Krauss, N. et al. Photosystem I at 4 Å resolution represents the first structural model of a joint photosynthetic reaction centre and core antenna system. Nature Struct. Biol. 3, 965–973 (1996).

    CAS  PubMed  Google Scholar 

  5. Klukas, O. et al. Localization of two phylloquinones, QK and QK′, in an improved electron density map of photosystem I at 4 Å resolution. J. Biol. Chem. 274, 7361–7367 (1999).

    CAS  PubMed  Google Scholar 

  6. Boekema, E. J. et al. Evidence for a trimeric organization of the photosystem I complex from the thermophilic cyanobacterium Synechococcus sp. FEBS Lett. 217, 283–286 (1987).

    CAS  Google Scholar 

  7. Brettel, K. Electron transfer and redox-cofactors in photosystem I. Biochim. Biophys. Acta 1318, 322–373 (1997).

    CAS  Google Scholar 

  8. Fromme, P. & Witt, H. T. Improved isolation and crystallization of photosystem I for structural analysis. Biochim. Biophys. Acta 1365, 175–184 (1998).

    CAS  Google Scholar 

  9. Mühlenhoff, U., Haehnel, W., Witt, H. T. & Herrmann, R. G. Genes encoding eleven subunits of photosystem I from the thermophilic cyanobacterium Synechococcus sp. Gene 127, 71–78 (1993).

    PubMed  Google Scholar 

  10. Koike, K., Ikeuchi, M., Hiyama, T. & Inoue, Y. Identification of photosystem I components from the cyanobacterium Synechococcus vulcanus by N-terminal sequencing. FEBS Lett. 253, 257–263 (1989).

    CAS  PubMed  Google Scholar 

  11. Ikeuchi, M., Nyhus, K. J., Inoue, Y. & Pakrasi, H. B. Identities of four low-molecular-mass subunits of the photosystem I complex from Anabaena variabilis ATCC 29413. Evidence for the presence of the psaI gene product in a cyanobacterial complex. FEBS Lett. 287, 5–9 (1991).

    CAS  PubMed  Google Scholar 

  12. Fromme, P., Schubert, W.-D. & Krauss, N. Structure of photosystem I: Suggestions on the docking sites for plastocyanin, ferredoxin and the coordination of P700. Biochim. Biophys. Acta 1187, 99–105 (1994).

    CAS  Google Scholar 

  13. Sun, J. et al. Oxidizing side of the cyanobacterial photosystem I. Evidence for interaction between the electron donor proteins and a lumenal surface helix of the PsaB subunit. J. Biol. Chem. 274, 19048–19054 (1999).

    CAS  PubMed  Google Scholar 

  14. Xu, Q., Yu, L., Chitnis, V. P. & Chitnis, P. R. Function and organization of photosystem I in a cyanobacterial mutant strain that lacks PsaF and PsaJ subunits. J. Biol. Chem. 269, 3205–3211 (1994).

    CAS  PubMed  Google Scholar 

  15. Hippler, M., Drepper, F., Rochaix, J. D. & Mühlenhoff, U. Insertion of the N-terminal part of PsaF from Chlamydomonas reinhardtii into photosystem I from Synechococcus elongatus enables efficient binding of algal plastocyanin and cytochrome c6. J. Biol. Chem. 274, 4180–4188 (1999).

    CAS  PubMed  Google Scholar 

  16. Mühlenhoff, U. et al. Characterization of a redox-active cross-linked complex between cyanobacterial photosystem I and its physiological acceptor flavodoxin. EMBO J. 15, 488–497 (1996).

    PubMed  PubMed Central  Google Scholar 

  17. Adman, E. T., Sieker, L. C. & Jensen, L. H. The structure of a bacterial ferredoxin. J. Biol. Chem. 248, 3987–3996 (1973).

    CAS  PubMed  Google Scholar 

  18. Falzone, C. J., Kao, Y. H., Zhao, J., Bryant, D. A. & Lecomte, J. T. Three-dimensional solution structure of PsaE from the cyanobacterium Synechococcus sp. strain PCC 7002, a photosystem I protein that shows structural homology with SH3 domains. Biochemistry 33, 6052–6062 (1994).

    CAS  PubMed  Google Scholar 

  19. Mayer, K. L., Shen, G., Bryant, D. A., Lecomte, J. T. & Falzone, C. J. The solution structure of photosystem I accessory protein E from the cyanobacterium Nostoc sp. strain PCC 8009. Biochemistry 38, 13736–13746 (1999).

    CAS  PubMed  Google Scholar 

  20. Deisenhofer, J., Epp, O., Sinning, I. & Michel, H. Crystallographic refinement at 2.3 Å resolution and refined model of the photosynthetic reaction centre from Rhodopseudomonas viridis. J. Mol. Biol. 246, 429–457 (1995).

    CAS  PubMed  Google Scholar 

  21. Scheer, H. Chlorophylls (CRC Press, Boca Raton, Florida, 1991).

    Google Scholar 

  22. Watanabe, T., Kobayashi, M., Hongu, A., Nakazato, M. & Hiyama, T. Evidence that a chlorophyll a′ dimer constitutes the photochemical reaction centre 1 (P700) in photosynthetic apparatus. FEBS Lett. 235, 252–256 (1985).

    Google Scholar 

  23. Artz, K. et al. Relationship between the oxidation potential and electron spin density of the primary electron donor in reaction centers from Rhodobacter sphaeroides. Proc. Natl Acad. Sci. USA 94, 13582–13587 (1997).

    ADS  CAS  PubMed  Google Scholar 

  24. Webber, A. N. et al. Site-directed mutations affecting the spectroscopic characteristics and midpoint potential of the primary donor in photosystem I. Biochemistry 35, 12857–12863 (1996).

    CAS  PubMed  Google Scholar 

  25. Käss, H., Fromme, P., Witt, H. T. & Lubitz, W. Orientation and electronic structure of the primary donor radical cation P700+• in Photosystem I: a single crystals EPR and ENDOR study. J. Phys. Chem. B 105, 1225–1239 (2001).

    Google Scholar 

  26. Kamlowski, A. et al. The quinone acceptor A1 in photosystem I: Binding site, and comparison to QA in purple bacteria reaction centers. J. Phys. Chem. B 102, 8278–8287 (1998).

    CAS  Google Scholar 

  27. Iwaki, M. & Itoh, S. Structure of the phylloquinone-binding (QΦ) site in green plant photosystem I reaction centers: the affinity of quinones and quinoid compounds for the QΦ site. Biochemistry 30, 5347–5352 (1991).

    CAS  PubMed  Google Scholar 

  28. Golbeck, J. H. in Advances in Photosynthesis: The Molecular Biology of Cyanobacteria (ed. Bryant, D. A.) 319–360 (Kluwer Academic, Dordrecht, Netherlands, 1994).

    Google Scholar 

  29. Bittl, R., Zech, S. G., Fromme, P., Witt, H. T. & Lubitz, W. Pulsed EPR structure analysis of photosystem I single crystals: localization of the phylloquinone acceptor. Biochemistry 36, 12001–12004 (1997).

    CAS  PubMed  Google Scholar 

  30. Yang, F. et al. Deletion of the PsaF polypeptide modifies the environment of the redox active phylloquinone (A1). Evidence for unidirectionality of electron transfer in Photosystem I. J. Phys. Chem. B 102, 8288–8299 (1998).

    CAS  Google Scholar 

  31. Joliot, P. & Joliot, A. In vivo analysis of the electron transfer within photosystem I: are the two phylloquinones involved? Biochemistry 38, 11130–11136 (1999).

    CAS  PubMed  Google Scholar 

  32. Guergova-Kuras, M., Boudreaux, B., Joliot, A., Joliot, P. & Redding, K. Evidence for two active branches for electron transfer in Photosystem I. Proc. Natl Acad. Sci. USA 98, 4437–4442 (2001).

    ADS  CAS  PubMed  Google Scholar 

  33. Moser, C. C. & Dutton, P. L. Engieneering protein structure for electron transfer function in photosynthetic reaction centers. Biochim. Biophys. Acta 1101, 171–176 (1992).

    CAS  PubMed  Google Scholar 

  34. Schlodder, E., Falkenberg, K., Gergeleit, M. & Brettel, K. Temperature dependence of forward and reverse electron transfer from A1-, the reduced secondary electron acceptor in photosystem I. Biochemistry 37, 9466–9476 (1998).

    CAS  PubMed  Google Scholar 

  35. Fish, L., Kück, U. & Bogorad, L. Two partially homologous adjacent light-inducible maize chloroplast genes encoding polypeptides of the P700 chlorophyll a protein complex of photosystem I. J. Biol. Chem. 260, 1413–1421 (1985).

    CAS  PubMed  Google Scholar 

  36. Chamorowsky, S. K. & Cammack, R. Direct determination of the midpoint potential of the acceptor X in chloroplast photosystem I by electrochemical reduction and ESR spectroscopy. Photobiochem. Photobiophys. 4, 195–200 (1982).

    Google Scholar 

  37. Zhao, J., Li, N., Warren, P. V., Golbeck, J. H. & Bryant, D. A. Site-directed conversion of a cysteine to aspartate leads to the assembly of a [3Fe-4S] cluster in PsaC of photosystem I. The photoreduction of FA is independent of FB. Biochemistry 31, 5093–5099 (1992).

    CAS  PubMed  Google Scholar 

  38. Golbeck, J. H. A comparative analysis of the spin state distribution of in vitro and in vivo mutants of PsaC. Photosynth. Res. 61, 107–144 (1999).

    CAS  Google Scholar 

  39. Förster, T. Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann. Phys. (Leipzig) 2, 55–75 (1948).

    ADS  MATH  Google Scholar 

  40. Pålsson, L. O. et al. Energy transfer and charge separation in photosystem I: P700 oxidation upon selective excitation of the long-wavelength antenna chlorophylls of Synechococcus elongatus. Biophys. J. 74, 2611–2622 (1998).

    ADS  PubMed  PubMed Central  Google Scholar 

  41. Fleming, G. R. & van Grondelle, R. Femtosecond spectroscopy of photosynthetic light-harvesting systems. Curr. Opin. Struct. Biol. 7, 738–748 (1997).

    CAS  PubMed  Google Scholar 

  42. Kratky, C. & Dunitz, J. D. Ordered aggregation states of chlorophyll and same of its derivatives. J. Mol. Biol. 113, 431–442 (1977).

    CAS  PubMed  Google Scholar 

  43. Coufal, J., Hladik, J. & Sofrova, D. The carotenoid content of photosystem I-pigment-protein-complexes of the Cyanobacterium Synechococcus elongatus. Photosynthetica 23, 603–616 (1989).

    CAS  Google Scholar 

  44. Makewicz, A., Radunz, A. & Schmidt, G. H. Comparative immunological detection of lipids and carotenoids on peptides of photosystem I from higher plants and cyanobacteria. Z. Naturforsch. 51c, 319–328 (1996).

    Google Scholar 

  45. Ashikawa, I., Miyata, A., Koike, H., Inoue, Y. & Koyama, Y. Light-induced structural change of β-carotene in thylakoid membranes. Biochemistry 25, 6154–6160 (1986).

    CAS  Google Scholar 

  46. Cogdell, R. J. Carotenoids in photosynthesis. Pure Applied Chem. 57, 723–728 (1985).

    CAS  Google Scholar 

  47. Makewicz, A., Radunz, A. & Schmidt, G. H. in Plant Lipid Metabolism (eds Kader, J. -C. & Mazliak, P.) 156–160 (Kluwer Academic, Dordrecht, Netherlands, 1995).

    Google Scholar 

  48. Schubert, W. D. et al. A common ancestor for oxygenic and anoxygenic photosynthetic systems: a comparison based on the structural model of photosystem I. J. Mol. Biol. 280, 297–314 (1998).

    CAS  PubMed  Google Scholar 

  49. Valkunas, L., Liuolia, V., Dekker, J. P. & van Grondelle, R. Description of energy migration and trapping in photosystem I by a model with two distance scaling parameters. Photosyn. Res. 43, 149–154 (1995).

    CAS  PubMed  Google Scholar 

  50. Karapetyan, N. V., Holzwarth, A. R. & Rögner, M. The photosystem I trimer of cyanobacteria: molecular organization, excitation dynamics and physiological significance. FEBS Lett. 460, 395–400 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

These studies are financially supported by Deutsche Forschungsgemeinschaft, by Bundesministerium für Bildung und Forschung and by Fonds der Chemischen Industrie. We thank D. DiFiore and H. Schmidt for technical assistance; W. Schroeder for supporting the analytical characterisation of the PSI preparations; B. Rasmussen and J. Lescar for long-term support during data collection at beamline ID2B at ESRF in Grenoble; and J. Hughes for reading and improving the manuscript. We particularly thank D. A. Bryant for discussions regarding PsaX and acknowledge R. Bittl, K. Brettel, M. Byrdin, P. Chitnis, J. Golbeck, B. Loll, W. Lubitz, E. Schlodder and D. Stehlik for discussions.

Author information

Authors and Affiliations

Authors

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jordan, P., Fromme, P., Witt, H. et al. Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411, 909–917 (2001). https://doi.org/10.1038/35082000

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35082000

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing