Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase

Abstract

Bacterial cells sense their population density through a sophisticated cell–cell communication system and trigger expression of particular genes when the density reaches a threshold. This type of gene regulation, which controls diverse biological functions including virulence, is known as quorum sensing1,2. Quorum-sensing signals, such as acyl-homoserine lactones (AHLs), are the essential components of the communication system. AHLs regulate virulence gene expression in a range of plant and animal (including human) bacterial pathogens3,4,5,6,7,8,9. AHL-producing tobacco restored the pathogenicity of an AHL-negative mutant of Erwinia carotovora10. Different bacterial species may produce different AHLs, which vary in the length and substitution of the acyl chain but contain the same homoserine lactone moiety. Here we show that the acyl-homoserine lactonase (AHL-lactonase), a new enzyme from Bacillus sp.11, inactivates AHL activity by hydrolysing the lactone bond of AHLs. Plants expressing AHL-lactonase quenched pathogen quorum-sensing signalling and showed significantly enhanced resistance to E. carotovora infection. Our results highlight a promising potential to use quorum-sensing signals as molecular targets for disease control, thereby broadening current approaches for prevention of bacterial infections.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: ESI-MS and tandem mass spectrometry analysis of the hydrolysis product of OHHL.
Figure 2: Genetic constructs for plant transformation and expression of aiiA messenger RNA in transgenic plants.
Figure 3: AHL-lactonase enzyme activity and E. carotovora inoculation.
Figure 4: Plant inoculation with Erwinia carotovora SCG1.

Accession codes

Accessions

GenBank/EMBL/DDBJ

Data deposits

The 16S rDNA sequence of Bacillus sp. 240B1 has been deposited in GenBank under accession number AF350926.

References

  1. 1

    Fuqua, C., Winans, S. C. & Greenberg, E. P. Census and consensus in bacterial ecosystems: the LuxR-LuxI family of quorum-sensing transcriptional regulators. Annu. Rev. Microbiol. 50, 727– 751 (1996).

    CAS  Article  Google Scholar 

  2. 2

    Robson, N. D., Cox, A. R., McGowan, S. J., Bycroft, B. W. & Salmond, G. P. Bacterial N-acyl-homoserine-lactone-dependent signaling and its potential biotechnological applications. Trends Biotechnol. 15, 458– 464 (1997).

    CAS  Article  Google Scholar 

  3. 3

    Jones, S. M. et al. The Lux autoinducer regulates the production of exoenzyme virulence determination in Erwinia carotovora and Pseudomonas aeruginosa. EMBO J. 12, 2477– 2482 (1993).

    CAS  Article  Google Scholar 

  4. 4

    Passador, L., Cook, J. M., Gambello, M. J., Rust, L. & Iglewski, B. H. Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science 260, 1127– 1130 (1993).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Pirhonen, M., Flego, D., Heikinheimo, R., & Palva, E. A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora. EMBO J. 12, 2467– 2476 (1993).

    CAS  Article  Google Scholar 

  6. 6

    von Bodman, S. B. & Farrand, S. K. Capsular polysaccharide biosynthesis and pathogenicity in Erwinia stewartii require induction by an N-acylhomoserine lactone autoinducer. J. Bacteriol. 177, 5000– 5008 (1995).

    CAS  Article  Google Scholar 

  7. 7

    Costa, J. M. & Loper, J. E. EcbI and EcbR: homologs of LuxI and LuxR affecting antibiotic and exoenzyme production by Erwinia carotovora subsp. betavasculorum. Can. J. Microbiol. 43, 1164– 1171 (1997).

    CAS  Article  Google Scholar 

  8. 8

    Dunphy, G., Miyamoto, C. & Meighen, E. A homoserine lactone autoinducer regulates virulence of an insect-pathogenic bacterium, Xenorhabdus nematophilus (Enterobacteriaceae). J. Bacteriol. 179, 5288– 5291 (1997).

    CAS  Article  Google Scholar 

  9. 9

    Lewenza, S., Conway, B., Greenberg, E. P. & Sokol, P. A. Quorum Sensing in Burkholderia cepacia: identification of the LuxRI Homologs CepRI. J. Bacteriol. 181, 748– 756 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Fray, R. G. et al. Plants genetically modified to produce N-acylhomoserine lactones communicate with bacteria. Nature Biotech. 17, 1017– 1020 (1999).

    CAS  Article  Google Scholar 

  11. 11

    Dong, Y.-H., Xu, J.-L., Li, X.-C. & Zhang, L. H. AiiA, a novel enzyme inactivates acyl homoserine-lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc. Natl Acad. Sci. USA 97, 3526– 3531 (2000).

    ADS  CAS  Article  Google Scholar 

  12. 12

    von Bodman, S. B., Majerczak, D. R. & Coplin, D. L. A negative regulator mediates quorum-sensing control of exopolysaccharide production in Pantoea stewartii subsp. stewartii. Proc. Natl Acad. Sci. USA 95, 7687– 7692 (1998).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Welch, M. et al. N-acyl homoserine lactone binding to the CarR receptor determines quorum-sensing specificity in Erwinia. EMBO J. 19, 631– 641 (2000).

    CAS  Article  Google Scholar 

  14. 14

    Qin, Y. P. et al. Quorum-sensing signal binding results in dimerization of TraR and its release from membranes into the cytoplasm. EMBO J. 19, 5212– 5221 (2000).

    CAS  Article  Google Scholar 

  15. 15

    Pearson, J. P., Van Delden, C. & Iglewski, B. H. Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J. Bacteriol. 181, 1203– 1210 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Zhu, J. & Winans, S. C. Autoinducer binding by the quorum-sensing regulator TraR increases affinity for target promoters in vitro and decreases TraR turnover rates in the whole cells. Proc. Natl Acad. Sci. USA 96, 4832– 4837 (1999).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Leadbetter, J. R. & Greenberg, E. P. Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus. J. Bacteriol. 182, 6921– 6926 (2000).

    CAS  Article  Google Scholar 

  18. 18

    Pearson, J. P. et al. Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc. Natl Acad. Sci. USA 91, 197– 201 (1994).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Winson, M. K. et al. Multiple N-acyl-l-homoserine lactones signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 92, 9427– 9431 (1995).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Zhang, L. H., Murphy, P. J., Kerr, A. & Tate, M. E. Agrobacterium conjugation and gene regulation by N-acyl-l-homoserine lactones. Nature 362, 446– 447 (1993).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Gallois, P. & Marinho, P. in Plant Gene Transfer and Expression Protocols (ed. Jones, H.) 39– 48 (Humana, Totowa, New Jersey, 1995).

    Book  Google Scholar 

  22. 22

    Beaujean, A., Sangwan, R. S., Lecardonnel, A. & Sangwan-Norreel, B. S. Agrobacterium-mediated transformation of three economically important potato cultivars using sliced internodal explants: an efficient protocol of transformation. J. Exp. Bot. 49, 1589– 1595 (1998).

    CAS  Article  Google Scholar 

  23. 23

    Borisjuk, N. V. et al. Calreticulin expression in plant cells: developmental regulation, tissue specificity and intracellular distribution. Planta 206, 504– 514 (1998).

    CAS  Article  Google Scholar 

  24. 24

    Givskov, M. et al. Eukaryotic interference with homoserine lactone-mediated prokaryotic signaling. J. Bacteriol. 178, 6618– 6622 (1996).

    CAS  Article  Google Scholar 

  25. 25

    Manefield, M. et al. Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiol. 145, 283– 291 (1999).

    CAS  Article  Google Scholar 

  26. 26

    Manefield, M., Harris, L., Rice, S. A., de Nys, R. & Kjelleberg, S. Inhibition of luminescence and virulence in the black tiger prawn (Penaeus monodon) pathogen Vibrio harveyi by intercellular signal antagonists. Appl. Environ. Microbiol. 66, 2079– 2084 (2000).

    CAS  Article  Google Scholar 

  27. 27

    Hoang, T. T. & Schweizer, H. P. Characterization of Pseudomonas aeruginosa enoyl-acyl carrier protein reductase (FabI): a target for the antimicrobial triclosan and its role in acylated homoserine lactone synthesis. J. Bacteriol. 181, 5489– 5497 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Borisjuk, N. V. et al. Production of recombinant proteins in plant root exudates. Nature Biotechnol. 17, 466– 469 (1999).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank A. Kerr, M. E. Tate, V. Sundaresan and K. Sampath for critical reviews of the manuscript. Funding was provided by the National Science and Technology Board of Singapore.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lian-Hui Zhang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dong, YH., Wang, LH., Xu, JL. et al. Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411, 813–817 (2001). https://doi.org/10.1038/35081101

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing