Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

How proteins move lipids and lipids move proteins

Key Points

  • Cellular membranes have distinct compositions that reflect their unique functions. Membrane proteins, synthesized in the cytosol or at the endoplasmic reticulum (ER) membrane, are targeted to the different membranes by structural motifs.

  • Local lipid synthesis and hydrolysis cannot explain the differences in lipid composition between the various membranes and between the two leaflets of the bilayer. The intracellular transport of lipids is selective.

  • Lipids are transported as monomers across membranes. Various families of transporters have been identified that might provide the necessary directionality and lipid specificity.

  • The main transport mechanism for lipids and proteins between organelles is vesicular. Selectivity in these pathways is generated by the lateral segregation of anterograde from retrograde (or resident) components. Lipid sorting is based on a spontaneous phase separation into less fluid sphingolipid–cholesterol domains, that move towards the plasma membrane, and more fluid glycerophospholipid domains, that are preferentially included in transport vesicles towards the ER.

  • Special properties of the lipid domains are recognized by various classes of membrane protein. Some of these are cargo being sorted, others provide directionality to the resulting transport vesicles.

  • Topologically and temporally restricted metabolism of lipids modifies their molecular shape. This seems to be an integral part of vesicle fission and, potentially, fusion.

  • The local production of signalling lipids determines membrane flux by coat recruitment and the activation of fusion. The activity of the responsible enzymes — kinases, phosphatases and phospholipases — is subject to regulation and forms an integral part of the cellular signalling system.

Abstract

Cells determine the bilayer characteristics of different membranes by tightly controlling their lipid composition. Local changes in the physical properties of bilayers, in turn, allow membrane deformation, and facilitate vesicle budding and fusion. Moreover, specific lipids at specific locations recruit cytosolic proteins involved in structural functions or signal transduction. We describe here how the distribution of lipids is directed by proteins, and, conversely, how lipids influence the distribution and function of proteins.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of lipid transport across and between cellular membranes.
Figure 2: Rates of spontaneous movement across the bilayer and diffusion into the aqueous phase34,85,86,87.
Figure 3: Lipid domains.
Figure 4: Lateral sorting of membrane proteins.
Figure 5: The molecular shape of lipids determines the physical properties of membranes.

Similar content being viewed by others

References

  1. Menon, A. K., Watkins, W. E. I. & Hrafnsdóttir, S. Specific proteins are required to translocate phosphatidylcholine bidirectionally across the endoplasmic reticulum. Curr. Biol. 10, 241–252 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Butler, M. & Morell, P. Sidedness of phospholipid synthesis on brain membranes. J. Neurochem. 39, 155–164 (1982).

    Article  CAS  PubMed  Google Scholar 

  3. Higgins, J. A. & Pigott, C. A. Asymmetric distribution of phosphatidylethanolamine in the endoplasmic reticulum demonstrated using trinitrobenzenesulphonic acid as a probe. Biochim. Biophys. Acta 693, 151–158 (1982).

    Article  CAS  PubMed  Google Scholar 

  4. Helenius, A. & Aebi, M. Intracellular functions of N-linked glycans. Science 291, 2364–2369 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Maeda, Y. et al. PIG-M transfers the first mannose to glycosylphosphatidylinositol on the lumenal side of the ER. EMBO J. 20, 250–261 (2001).This paper pinpoints the substrate for this lumenal mannosyltransferase, glucoseaminyl (GlcN) α1-6-phosphoinositol, which is synthesized on the cytosolic side, as the actual lipid that translocates across the endoplasmic reticulum membrane during GPI-anchor synthesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lannert, H., Bünning, C., Jeckel, D. & Wieland, F. T. Lactosylceramide is synthesized in the lumen of the Golgi apparatus. FEBS Lett. 342, 91–96 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Burger, K. N. J., van der Bijl, P. & van Meer, G. Topology of sphingolipid galactosyltransferases in ER and Golgi: transbilayer movement of monohexosyl sphingolipids is required for higher glycosphingolipid biosynthesis. J. Cell Biol. 133, 15–28 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Stahl, A. et al. Identification of the major intestinal fatty acid transport protein. Mol. Cell 4, 299–308 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Zhou, Q. et al. Molecular cloning of human plasma membrane phospholipid scramblase. A protein mediating transbilayer movement of plasma membrane phospholipids. J. Biol. Chem. 272, 18240–18244 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Seigneuret, M. & Devaux, P. F. ATP-dependent asymmetric distribution of spin-labeled phospholipids in the erythrocyte membrane: relation to shape changes. Proc. Natl Acad. Sci. USA 81, 3751–3755 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Farge, E., Ojcius, D. M., Subtil, A. & Dautry-Varsat, A. Enhancement of endocytosis due to aminophospholipid transport across the plasma membrane of living cells. Am. J. Physiol. 276, C725–C733 (1999).

  12. Tang, X., Halleck, M. S., Schlegel, R. A. & Williamson, P. A subfamily of P-type ATPases with aminophospholipid transporting activity. Science 272, 1495–1497 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Daleke, D. L. & Lyles, J. V. Identification and purification of aminophospholipid flippases. Biochim. Biophys. Acta 1486, 108–127 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Smit, J. J. M. et al. Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell 75, 451–462 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Berr, F., Meier, P. J. & Stieger, B. Evidence for the presence of a phosphatidylcholine translocator in isolated rat liver canalicular plasma membrane vesicles. J. Biol. Chem. 268, 3976–3979 (1993).

    CAS  PubMed  Google Scholar 

  16. van Helvoort, A. et al. MDR1 P-glycoprotein is a lipid translocase of broad specificity, while MDR3 P-glycoprotein specifically translocates phosphatidylcholine. Cell 87, 507–517 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Ernest, S. & Bello-Reuss, E. Secretion of platelet-activating factor is mediated by MDR1 P-glycoprotein in cultured human mesangial cells. J. Am. Soc. Nephrol. 10, 2306–2313 (1999).

    CAS  PubMed  Google Scholar 

  18. Raggers, R. J., Vogels, I. & van Meer, G. MDR1 P-glycoprotein (ABCB1) secretes platelet activating factor (PAF). Biochem. J. (in the press).

  19. Brasaemle, D. L., Robertson, A. D. & Attie, A. D. Transbilayer movement of cholesterol in the human erythrocyte membrane. J. Lipid Res. 29, 481–489 (1988).

    CAS  PubMed  Google Scholar 

  20. Hamon, Y. et al. ABC1 promotes engulfment of apoptotic cells and transbilayer redistribution of phosphatidylserine. Nature Cell Biol. 2, 399–406 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Berge, K. E. et al. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science 290, 1771–1775 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Sun, H., Molday, R. S. & Nathans, J. Retinal stimulates ATP hydrolysis by purified and reconstituted ABCR, the photoreceptor-specific ATP-binding cassette transporter responsible for Stargardt disease. J. Biol. Chem. 274, 8269–8281 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Weng, J. et al. Insights into the function of Rim protein in photoreceptors and etiology of Stargardt's disease from the phenotype in abcr knockout mice. Cell 98, 13–23 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Davies, J. P., Chen, F. W. & Ioannou, Y. A. Transmembrane molecular pump activity of Niemann-Pick C1 protein. Science 290, 2295–2298 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Goldin, E. et al. Type C Niemann-Pick disease: a murine model of the lysosomal cholesterol lipidosis accumulates sphingosine and sphinganine in liver. Biochim. Biophys. Acta 1127, 303–311 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Naureckiene, S. et al. Identification of HE1 as the second gene of Niemann-Pick C disease. Science 290, 2298–2301 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Daum, G. & Vance, J. E. Import of lipids into mitochondria. Prog. Lipid Res. 36, 103–130 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Ladinsky, M. S., Mastronarde, D. N., McIntosh, J. R., Howell, K. E. & Staehelin, L. A. Golgi structure in three dimensions: functional insights from the normal rat kidney cell. J. Cell Biol. 144, 1135–1149 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kearns, B. G. et al. Essential role for diacylglycerol in protein transport from the yeast Golgi complex. Nature 387, 101–105 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. van Tiel, C. M., Luberto, C., Snoek, G. T., Hannun, Y. A. & Wirtz, K. W. Rapid replenishment of sphingomyelin in the plasma membrane upon degradation by sphingomyelinase in NIH3T3 cells overexpressing the phosphatidylinositol transfer protein-β. Biochem. J. 346, 537–543 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. van Helvoort, A. et al. Mice without phosphatidylcholine transfer protein have no defects in the secretion of phosphatidylcholine into bile or into lung airspaces. Proc. Natl Acad. Sci. USA 96, 11501–11506 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Alpy, F. et al. The STAR homolog MLN64: a late endosomal cholesterol binding protein. J. Biol. Chem. 276, 4261–4269 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. van Genderen, I. L., van Meer, G., Slot, J. W., Geuze, H. J. & Voorhout, W. F. Subcellular localization of Forssman glycolipid in epithelial MDCK cells by immuno-electronmicroscopy after freeze-substitution. J. Cell Biol. 115, 1009–1019 (1991).

    Article  CAS  PubMed  Google Scholar 

  34. McLean, L. R. & Phillips, M. C. Kinetics of phosphatidylcholine and lysophosphatidylcholine exchange between unilamellar vesicles. Biochemistry 23, 4624–4630 (1984).

    Article  CAS  PubMed  Google Scholar 

  35. Wattenberg, B. W. & Silbert, D. F. Sterol partitioning among intracellular membranes. Testing a model for cellular sterol distribution. J. Biol. Chem. 258, 2284–2289 (1983).

    CAS  PubMed  Google Scholar 

  36. Nilsson, O. S. & Dallner, G. Enzyme and phospholipid asymmetry in liver microsomal membranes. J. Cell Biol. 72, 568–583 (1977).

    Article  CAS  PubMed  Google Scholar 

  37. van Meer, G. Lipid traffic in animal cells. Annu. Rev. Cell Biol. 5, 247–275 (1989).

    Article  CAS  PubMed  Google Scholar 

  38. Brügger, B. et al. Evidence for segregation of sphingomyelin and cholesterol during formation of COPI-coated vesicles. J. Cell Biol. 151, 507–518 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Radhakrishnan, A., Anderson, T. G. & McConnell, H. M. Condensed complexes, rafts, and the chemical activity of cholesterol in membranes. Proc. Natl Acad. Sci. USA 97, 12422–12427 (2000).This paper, and several other papers from the same group in 1999/2000, bridge a gap between physical chemistry and cell biology by showing liquid–liquid phase separations in lipid mixtures of biological relevance. McConnell first demonstrated such phase separations 20 years ago.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Keenan, T. W. & Morré, D. J. Phospholipid class and fatty acid composition of Golgi apparatus isolated from rat liver and comparison with other cell fractions. Biochemistry 9, 19–25 (1970).

    Article  CAS  PubMed  Google Scholar 

  41. Murray, D. et al. Appendix: do basic peptides form large lateral domains with acidic lipids when they bind to phospholipid vesicles? Biophys. J. 77, 3185–3188 (1999).

    Article  Google Scholar 

  42. Wang, T. Y. & Silvius, J. R. Different sphingolipids show differential partitioning into sphingolipid/cholesterol-rich domains in lipid bilayers. Biophys. J. 79, 1478–1489 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mukherjee, S., Soe, T. T. & Maxfield, F. R. Endocytic sorting of lipid analogues differing solely in the chemistry of their hydrophobic tails. J. Cell Biol. 144, 1271–1284 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gagescu, R. et al. The recycling endosome of Madin–Darby Canine Kidney cells is a mildly acidic compartment rich in raft components. Mol. Biol. Cell 11, 2775–2791 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Puri, V. et al. Cholesterol modulates membrane traffic along the endocytic pathway in sphingolipid-storage diseases. Nature Cell Biol. 1, 386–388 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Simons, K. & Gruenberg, J. Jamming the endosomal system: lipid rafts and lysosomal storage diseases. Trends Cell Biol. 10, 459–462 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Bretscher, M. S. & Munro, S. Cholesterol and the Golgi apparatus. Science 261, 1280–1281 (1993).Great paper noticing the difference in the length of the transmembrane domains between proteins of the Golgi and of the plasma membrane.

    Article  CAS  PubMed  Google Scholar 

  48. Grove, S. N., Bracker, C. E. & Morré, D. J. Cytomembrane differentiation in the endoplasmic reticulum-Golgi apparatus-vesicle complex. Science 161, 171–173 (1968).

    Article  CAS  PubMed  Google Scholar 

  49. Moffett, S., Brown, D. A. & Linder, M. E. Lipid-dependent targeting of G proteins into rafts. J. Biol. Chem. 275, 2191–2198 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Dietrich, C. et al. Lipid rafts reconstituted in model membranes. Biophys. J. 80, 1417–1428 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Parton, R. G. Ultrastructural localization of gangliosides; GM1 is concentrated in caveolae. J. Histochem. Cytochem. 42, 155–166 (1994).This paper provides solid morphological evidence for the concentration of a glycolipid in caveolae.

    Article  CAS  PubMed  Google Scholar 

  52. Harder, T., Scheiffele, P., Verkade, P. & Simons, K. Lipid domain structure of the plasma membrane revealed by patching of membrane components. J. Cell Biol. 141, 929–942 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rayner, J. C. & Pelham, H. R. Transmembrane domain-dependent sorting of proteins to the ER and plasma membrane in yeast. EMBO J. 16, 1832–1841 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lang, T. et al. SNAREs are concentrated in cholesterol-dependent clusters that define docking and fusion sites for exocytosis. EMBO J. 20, 2202–2213 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Martin, T. F. Phosphoinositide lipids as signaling molecules: common themes for signal transduction, cytoskeletal regulation, and membrane trafficking. Annu. Rev. Cell Dev. Biol. 14, 231–264 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Odorizzi, G., Babst, M. & Emr, S. D. Phosphoinositide signaling and the regulation of membrane trafficking in yeast. Trends Biochem. Sci. 25, 229–235 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Fernandez-Borja, M. et al. Multivesicular body morphogenesis requires phosphatidyl-inositol 3-kinase activity. Curr. Biol. 9, 55–58 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Gillooly, D. J., Simonsen, A. & Stenmark, H. Cellular functions of phosphatidylinositol 3-phosphate and FYVE domain proteins. Biochem. J. 355, 249–258 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Corvera, S. & Czech, M. P. Direct targets of phosphoinositide 3-kinase products in membrane traffic and signal transduction. Trends Cell Biol. 8, 442–446 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Jackson, C. L. & Casanova, J. E. Turning on ARF: the Sec7 family of guanine-nucleotide-exchange factors. Trends Cell Biol. 10, 60–67 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Gaullier, J. M. et al. FYVE fingers bind PtdIns(3)P. Nature 394, 432–433 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Simonsen, A. et al. EEA1 links PI(3)K function to rab5 regulation of endosome fusion. Nature 394, 494–498 (1998).References 61 and 62 describe for the first time the function of FYVE domains in mammalian cells and provide a link to the Rab5 GTPase switch in endosome dynamics.

    Article  CAS  PubMed  Google Scholar 

  63. Mayer, A. et al. Phosphatidylinositol 4,5-bisphosphate regulates two steps of homotypic vacuole fusion. Mol. Biol. Cell 11, 807–817 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Thai, T. P. et al. Impaired membrane traffic in defective ether lipid biosynthesis. Hum. Mol. Genet. 10, 127–136 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. van der Sluijs, P. et al. Reversible phosphorylation-dephosphorylation determines the localization of rab4 during the cell cycle. EMBO J. 11, 4379–4389 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sheetz, M. P. Cell control by membrane-cytoskeleton adhesion. Nature Rev. Mol. Cell Biol. 2, 392–396 (2001).

    Article  CAS  Google Scholar 

  67. Schmidt, A. et al. Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid. Nature 401, 133–141 (1999).This paper demonstrates that both the acyltransferase activity of the protein and its localization to the budding site through binding to dynamin are required for vesicle fission.

    Article  CAS  PubMed  Google Scholar 

  68. Weigert, R. et al. CtBP/BARS induces fission of Golgi membranes by acylating lysophosphatidic acid. Nature 402, 429–433 (1999).Shows that acylation of lysophosphatidic acid is also essential for budding from the Golgi.

    Article  CAS  PubMed  Google Scholar 

  69. Goni, F. M. & Alonso, A. Structure and functional properties of diacylglycerols in membranes. Prog. Lipid Res. 38, 1–48 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Roth, M. G., Bi, K., Ktistakis, N. T. & Yu, S. Phospholipase D as an effector for ADP-ribosylation factor in the regulation of vesicular traffic. Chem. Phys. Lipids 98, 141–152 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. de Figueiredo, P., Polizotto, R. S., Drecktrah, D. & Brown, W. J. Membrane tubule-mediated reassembly and maintenance of the Golgi complex is disrupted by phospholipase A2 antagonists. Mol. Biol. Cell 10, 1763–1782 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Weidman, P. J. Anterograde transport through the Golgi complex: do Golgi tubules hold the key? Trends Cell Biol. 5, 302–305 (1995).

    Article  CAS  PubMed  Google Scholar 

  73. Pelham, H. R. & Rothman, J. E. The debate about transport in the Golgi. Two sides of the same coin? Cell 102, 713–719 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Kobayashi, T. et al. Late endosomal membranes rich in lysobisphosphatidic acid regulate cholesterol transport. Nature Cell Biol. 1, 113–118 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Hirsch, J. G., Fedorko, M. E. & Cohn, Z. A. Vesicle fusion and formation at the surface of pinocytic vacuoles in macrophages. J. Cell Biol. 38, 629–632 (1968).Elegant morphogical study showing that internal vesicles budding from the limiting membrane of an endosome have a different membrane structure, indicative of a different membrane composition.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tepper, A. D. et al. Sphingomyelin hydrolysis to ceramide during the execution phase of apoptosis results from phospholipid scrambling and alters cell-surface morphology. J. Cell Biol. 150, 155–164 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lee, M. J. et al. Sphingosine-1-phosphate as a ligand for the G protein coupled receptor EDG-1. Science 279, 1552–1555 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Contos, J. J., Ishii, I. & Chun, J. Lysophosphatidic acid receptors. Mol. Pharmacol. 58, 1188–1196 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Fleischer, B., Zambrano, F. & Fleischer, S. Biochemical characterization of the Golgi complex of mammalian cells. J. Supramol. Struct. 2, 737–750 (1974).

    Article  CAS  PubMed  Google Scholar 

  80. Kawai, K., Fujita, M. & Nakao, M. Lipid components of two different regions of an intestinal epithelial cell membrane of mouse. Biochim. Biophys. Acta 369, 222–233 (1974).

    Article  CAS  PubMed  Google Scholar 

  81. van Meer, G. & Simons, K. The function of tight junctions in maintaining differences in lipid composition between the apical and the basolateral cell surface domains of MDCK cells. EMBO J. 5, 1455–1464 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pelkmans, L., Kartenbeck, J. & Helenius, A. Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nature Cell Biol. 3, 473–483 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. van IJzendoorn, S. C. D. & Hoekstra, D. (Glyco)sphingolipids are sorted in sub-apical compartments in HepG2 cells: a role for non-Golgi-related intracellular sites in the polarized distribution of (glyco)sphingolipids. J. Cell Biol. 142, 683–696 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yoshimori, T., Keller, P., Roth, M. G. & Simons, K. Different biosynthetic transport routes to the plasma membrane in BHK and CHO cells. J. Cell Biol. 133, 247–256 (1996).

    Article  CAS  PubMed  Google Scholar 

  85. Mohandas, N., Wyatt, J., Mel, S. F., Rossi, M. E. & Shohet, S. B. Lipid translocation across the human erythrocyte membrane. Regulatory factors. J. Biol. Chem. 257, 6537–6543 (1982).

    CAS  PubMed  Google Scholar 

  86. Phillips, M. C., Johnson, W. J. & Rothblat, G. H. Mechanism and consequences of cellular cholesterol exchange and transfer. Biochim. Biophys. Acta 906, 223–276 (1987).

    Article  CAS  PubMed  Google Scholar 

  87. Bai, J. & Pagano, R. E. Measurement of spontaneous transfer and transbilayer movement of BODIPY-labeled lipids in lipid vesicles. Biochemistry 36, 8840–8848 (1997).

    Article  CAS  PubMed  Google Scholar 

  88. Gottesman, M. M. & Pastan, I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu. Rev. Biochem. 62, 385–427 (1993).

    Article  CAS  PubMed  Google Scholar 

  89. Madore, N. et al. Functionally different GPI proteins are organized in different domains on the neuronal surface. EMBO J. 18, 6917–6926 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Schnitzer, J. E., McIntosh, D. P., Dvorak, A. M., Liu, J. & Oh, P. Separation of caveolae from associated microdomains of GPI-anchored proteins. Science 269, 1435–1439 (1995).

    Article  CAS  PubMed  Google Scholar 

  91. Maulik, P. R. & Shipley, G. G. Interactions of N-stearoyl sphingomyelin with cholesterol and dipalmitoylphosphatidylcholine in bilayer membranes. Biophys. J. 70, 2256–2265 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Maulik, P. R. & Shipley, G. G. X-ray diffraction and calorimetric study of N-lignoceryl sphingomyelin membranes. Biophys. J. 69, 1909–1916 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Nezil, F. A. & Bloom, M. Combined influence of cholesterol and synthetic amphiphillic peptides upon bilayer thickness in model membranes. Biophys. J. 61, 1176–1183 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cullis, P. R. & de Kruijff, B. Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim. Biophys. Acta 559, 399–420 (1979).

    Article  CAS  PubMed  Google Scholar 

  95. Zimmerberg, J. & Chernomordik, L. V. Membrane fusion. Adv. Drug Deliv. Rev. 38, 197–205 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Thiele, C., Hannah, M. J., Fahrenholz, F. & Huttner, W. B. Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles. Nature Cell Biol. 2, 42–49 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Haque, M. E., McIntosh, T. J. & Lentz, B. R. Influence of lipid composition on physical properties and PEG–mediated fusion of curved and uncurved model membrane vesicles: 'nature's own' fusogenic lipid bilayer. Biochemistry 40, 4340–4348 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize that out of 30,000 PubMed papers on lipid and transport, we quote only 97.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

scramblase

ABC transporter

ABCB4

ABCB1

Tangier disease

ABCA1

sitosterolaemia

ABCG5

ABCG8

ABCA4

ABCD1

Niemann-Pick type C

NPC1

NPC2

STAR

MLN64

caveolin

FYVE domains

PH domains

AP-1

AP-3

AP-4

GGA

PITP

endophilin

Glossary

EXOCYTIC PATHWAY

Secretory or membrane proteins are inserted into the endoplasmic reticulum. They are then transported through the Golgi to the trans-Golgi network, where they are sorted to their final destination.

ENDOCYTIC PATHWAY

Macromolecules are endocytosed at the plasma membrane. They first arrive in early endosomes, then late endosomes, and finally lysosomes where they are degraded by hydrolases. Molecules can recycle to the plasma membrane from early endosomes, and there are also connections with the exocytic pathway.

LIPID CONCENTRATION

The density of a given lipid at a certain lateral position on one surface of a particular membrane, expressed here as mol% of total lipids. Mol% of phospholipids does not take into account the presence of glycosphingolipids and cholesterol.

VESICULAR TRANSPORT

Transport from one organelle to another, during which cargo-containing vesicles bud from the donor membrane and fuse with an acceptor membrane.

GPI

The general function of GPI anchors is to attach proteins to membranes, possibly to specific domains therein. The anchor is made of one molecule of phosphatidylinositol to which a carbohydrate chain is linked through the C-6 hydroxyl of the inositol, and is linked to the protein through an ethanolamine phosphate moiety.

ABC TRANSPORTERS

Large protein family of transporters that contain an ATP-binding cassette. They hydrolyse ATP and transfer a diverse array of small molecules across membranes.

MULTIDRUG TRANSPORTER

Energy-dependent efflux pump that is responsible for decreased drug accumulation in multidrug-resistant cells. Multidrug resistance is an acquired simultaneous resistance to a wide spectrum of drugs arising from the administration of drugs typically over long periods.

HDL

The smallest type of lipoprotein found in blood plasma, which functions in reverse transport from tissues to the liver.

DISC

The phototransduction apparatus in the outer segment of rod cells contains a stack of discs, each formed by a closed membrane in which rhodopsin molecules are embedded.

DOMAIN

An area in a membrane with a concentration of proteins and/or lipids that is different from its immediate environment. The term 'domain' carries no information about its size relative to the total membrane area, whereas terms such as 'microdomain' or 'raft' suggest that that they cover far less than half of the surface.

COPI VESICLES

Coated vesicles involved in transport through the Golgi and probably in retrograde transport from the Golgi to the endoplasmic reticulum. The COPI coatomer is made of seven subunits (α-, β-, β'-, γ-, δ-, ɛ- and ζ-COP).

CAVEOLA

Flask-shaped, cholesterol-rich invagination of the plasma membrane that might mediate the uptake of some extracellular materials, and is probably involved in cell signalling.

SNARES

(Soluble NSF attachment protein receptor, where NSF stands for N-ethyl-maleimide-sensitive fusion protein.) Proteins required for membrane fusion in exocytosis and other membrane transport events. When trans-SNARE complexes are formed between vesicle SNAREs and target-membrane SNAREs, they pull the two membranes close together, presumably causing them to fuse.

ARF1

Small GTPase responsible for recruiting different types of coat, leading to vesicle budding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sprong, H., van der Sluijs, P. & van Meer, G. How proteins move lipids and lipids move proteins. Nat Rev Mol Cell Biol 2, 504–513 (2001). https://doi.org/10.1038/35080071

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35080071

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing