Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

KANADI regulates organ polarity in Arabidopsis

Abstract

Leaves and floral organs are polarized along their adaxial–abaxial (dorsal–ventral) axis. In Arabidopsis, this difference is particularly obvious in the first two rosette leaves, which possess trichomes (leaf hairs) on their adaxial surface but not their abaxial surface1,2,3. Mutant alleles of KANADI (KAN) were identified in a screen for mutants that produce abaxial trichomes on these first two leaves. kan mutations were originally identified as enhancers of the mutant floral phenotype of crabs claw (crc), a gene that specifies abaxial identity in carpels4,5. Here we show that KAN is required for abaxial identity in both leaves and carpels, and encodes a nuclear-localized protein in the GARP family of putative transcription factors. The expression pattern of KAN messenger RNA and the effect of ectopically expressing KAN under the regulation of the cauliflower mosaic virus (CAMV) 35S promoter indicate that KAN may also specify peripheral identity in the developing embryo.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of kanadi on organ polarity.
Figure 2: Molecular characterization of the KAN gene.
Figure 3: In situ location of KAN mRNA.
Figure 4: Seedling phenotypes of plants resulting from ectopic expression of KAN.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Data deposits

The cDNA sequence for KAN is deposited in GenBank under accession number AY030192.

References

  1. Telfer, A. & Poethig, R. S. in Arabidopsis (eds Meyerowitz, E. M. & Somerville, C. R.) 379– 401 (Cold Spring Harbor Laboratory Press, Plainview, 1994).

    Google Scholar 

  2. Chien, J. C. & Sussex, I. M. Differential regulation of trichome formation on the adaxial and abaxial leaf surfaces by gibberellins and photoperiod in Arabidopsis thaliana (L.) Heynh. Plant Physiol. 111, 1321– 1328 (1996).

    Article  CAS  Google Scholar 

  3. Telfer, A., Bollman, K. M. & Poethig, R. S. Phase change and the regulation of trichome distribution in Arabidopsis thaliana. Development 124, 645– 654 (1997).

    Article  CAS  Google Scholar 

  4. Bowman, J. L. & Smyth, D. R. CRABS CLAW, a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains. Development 126, 2387– 2396 (1999).

    Article  CAS  Google Scholar 

  5. Eshed, Y., Baum, S. F. & Bowman, J. L. Distinct mechanisms promote polarity establishment in carpels of Arabidopsis. Cell 99, 199– 209 (1999).

    Article  CAS  Google Scholar 

  6. Behringer, F. J. & Medford, J. I. A plasmid rescue technique for the recovery of plant DNA disrupted by T-DNA insertion. Plant Mol. Biol. Rep. 10, 190– 198 (1992).

    Article  CAS  Google Scholar 

  7. Kieber, J. J., Rothenberg, M., Roman, G., Feldmann, K. A. & Ecker, J. R. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell 72, 427– 441 (1993).

    Article  CAS  Google Scholar 

  8. Riechmann, J. L. et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290, 2105– 2110 (2000).

    Article  ADS  CAS  Google Scholar 

  9. Hall, L. N., Rossini, L., Cribb, L. & Langdale, J. A. GOLDEN 2: a novel transcriptional regulator of cellular differentiation in the maize leaf. Plant Cell 10, 925– 936 (1998).

    Article  CAS  Google Scholar 

  10. Sakai, H., Aoyama, T., Bono, H. & Oka, A. Two-component response regulators from Arabidopsis thaliana contain a putative DNA-binding motif. Plant Cell Physiol. 39, 1232– 1239 (1998).

    Article  CAS  Google Scholar 

  11. Wykoff, D. D., Grossman, A. R., Weeks, D. P., Usuda, H. & Shimogawara, K. Psr1, a nuclear localized protein that regulates phosphorus metabolism in Chlamydomonas. Proc. Natl Acad. Sci. USA 96, 15336– 15341 (1999).

    Article  ADS  CAS  Google Scholar 

  12. Sakai, H., Aoyama, T. & Oka, A. Arabidopsis ARR1 and ARR2 response regulators operate as transcriptional activators. Plant J. 24, 703– 711 (2000).

    Article  CAS  Google Scholar 

  13. Imamura, A. et al. Compilation and characterization of Arabidopsis thaliana response regulators implicated in His-Asp phosphorelay signal transduction. Plant Cell Physiol. 40, 733– 742 (1999).

    Article  CAS  Google Scholar 

  14. Lohrmann, J. et al. Differential expression and nuclear localization of response regulator-like proteins from Arabidopsis thaliana. Plant Biol. 1, 495– 505 (1999).

    Article  CAS  Google Scholar 

  15. Makino, S. et al. Genes encoding pseudo-response regulators: insight into His-to-Asp phosphorelay and circadian rhythm in Arabidopsis thaliana. Plant Cell Physiol. 41, 791– 803 (2000).

    Article  CAS  Google Scholar 

  16. Blom, N., Gammeltoft, S. & Brunak, S. Sequence- and structure-based prediction of eukaryotic protein phosphorylation sites. J. Mol. Biol. 294, 1351– 1362 (1999).

    Article  CAS  Google Scholar 

  17. Varagona, M. J., Schmidt, R. J. & Raikhel, N. V. Nuclear localization signal(s) required for nuclear targeting of the maize regulatory protein Opaque-2. Plant Cell 4, 1213– 1227 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Clough, S. J. & Bent, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735– 743 (1998).

    Article  CAS  Google Scholar 

  19. Lynn, K. et al. The PINHEAD/ZWILLE gene acts pleiotropically in Arabidopsis development and has overlapping functions with the ARGONAUTE1 gene. Development 126, 469– 481 (1999).

    Article  CAS  Google Scholar 

  20. McConnell, J. R. & Barton, M. K. Leaf polarity and meristem formation in Arabidopsis. Development 125, 2935– 2942 (1998).

    Article  CAS  Google Scholar 

  21. Roberts, C. S. et al. in pCAMBIA Vector Release Manual Version 3.05 (CAMBIA, Canberra, 1997)..

    Google Scholar 

  22. Lincoln, C., Long, J., Yamaguchi, J., Serikawa, K. & Hake, S. A knotted1-like homeobox gene in Arabidopsis is expressed in the vegetative meristem and dramatically alters leaf morphology when overexpressed in transgenic plants. Plant Cell 6, 1859– 1876 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Barton, M. K. & Poethig, R. S. Formation of the shoot apical meristem in Arabidopsis thaliana: an analysis of development in the wild type and shoot meristemless mutant. Development 119, 823– 831 (1993).

    Article  Google Scholar 

  24. Koncz, C. & Schell, J. The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol. Gen. Genet. 204, 383– 396 (1986).

    Article  CAS  Google Scholar 

  25. Patharkar, O. R & Cushman, J. C. A stress-induced calcium-dependent protein kinase from Mesembryanthemum crystallinum phosphorylates a two-component pseudo-response regulator. Plant J. 24, 679– 691 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Eshed and J. Bowman for pointing out the similarity between kanadi and our early trichomes mutant and for providing seeds of kan-2 for allelism tests. We also thank K. Barton for suggesting that KAN might be involved in radial as well as adaxial/abaxial patterning and for providing some of the tissue used for in situ hybridization; M. Aukerman for the pistil scanning electron mictograph; and M. Bucan for helpful comments on this manuscript. This work was supported by NIH Postdoctoral Research Fellowship (R.K.) and by a DOE grant (R.S.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Scott Poethig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kerstetter, R., Bollman, K., Taylor, R. et al. KANADI regulates organ polarity in Arabidopsis. Nature 411, 706–709 (2001). https://doi.org/10.1038/35079629

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35079629

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing