Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Effects of macrophyte species richness on wetland ecosystem functioning and services

Abstract

Wetlands provide many important ecosystem services to human society1,2,3,4,5, which may depend on how plant diversity influences biomass production and nutrient retention4,6,7,8. Vascular aquatic plant diversity may not necessarily enhance wetland ecosystem functioning, however, because competition among these plant species can be strong, often resulting in the local dominance of a single species4,9. Here we have manipulated the species richness of rooted, submerged aquatic plant (macrophyte) communities in experimental wetland mesocosms. We found higher algal and total plant (algal plus macrophyte) biomass, as well as lower loss of total phosphorus, in mesocosms with a greater richness of macrophyte species. Greater plant biomass resulted from a sampling effect; that is, the increased chance in species mixtures that algal production would be facilitated by the presence of a less competitive species—in this case, crisped pondweed. Lower losses of total phosphorus resulted from the greater chance in species mixtures of a high algal biomass and the presence of sago pondweed, which physically filter particulate phosphorus from the water2,10,11. These indirect and direct effects of macrophyte species richness on algal production, total plant biomass and phosphorus loss suggest that management practices that maintain macrophyte diversity may enhance the functioning and associated services of wetland ecosystems.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The effect of species richness on algal biomass (a), nutrient retention (b) and above-ground macrophyte biomass (c) (mean ± s.e.).
Figure 2: Biomass yield (mean ± s.e.) per genet (shoot biomass per individual planted) of the four submerged macrophyte species (a-d) in monocultures and in mixed cultures.

Similar content being viewed by others

References

  1. Mitsch, W. J. & Gosselink, J. G. Wetlands (Van Nostrund Reinhold, New York, 1993).

    Google Scholar 

  2. Mitsch, W. J., Cronk, J. K., Wu, X., Nairn, R. W. & Hey, D. L. Phosphorus retention in constructed freshwater riparian marshes. Ecol. Appl. 5, 830–845 (1995).

    Article  Google Scholar 

  3. Costanza, R. et al. The value of the world's ecosystem services and natural capital. Nature 387, 253–260 (1997).

    Article  CAS  ADS  Google Scholar 

  4. Chambers, R. M., Meyerson, L. A. & Saltonstall, K. Expansion of Phragmites australis into tidal wetlands of North America. Aquat. Bot. 64, 261–273 (1999).

    Article  Google Scholar 

  5. Wilson, M. A. & Carpenter, S. R. Economic valuation of freshwater ecosystem services in the United States: 1971–1997. Ecol. Appl. 9, 772–783 (1999).

    Google Scholar 

  6. Pollock, M. M., Naiman, R. J. & Hanley, T. A. Plant species richness in riparian wetlands—A test of biodiversity theory. Ecology 79, 94–105 (1998).

    Google Scholar 

  7. Bedford, B. L., Walbridge, M. R. & Aldous, A. Patterns in nutrient availability and plant diversity of temperate North American wetlands. Ecology 80, 2151–2169 (1999).

    Article  Google Scholar 

  8. Grace, J. B. The factors controlling species density in herbaceous plant communities: An assessment. Persp. Plant Ecol. Evol. Syst. 2, 1–28 (1999).

    Article  Google Scholar 

  9. Fischer, J. M., Klug, J. L., Reed, A. T. & Chalmers, A. G. Spatial pattern of localized disturbance along a southeastern salt marsh tidal creek. Estuaries 23, 565–571 (2000).

    Article  Google Scholar 

  10. Wetzel, R. G. Land–water interfaces: Metabolic and limnological regulators. Verh. Internat. Verein. Limnol. 24, 6–24 (1990).

    Google Scholar 

  11. Wu, X. & Mitsch, W. J. Spatial and temporal patterns of algae in newly constructed freshwater wetlands. Wetlands 18, 9–20 (1998).

    Article  Google Scholar 

  12. Jeppesen, E. et al. Lake and catchment management in Denmark. Hydrobiologia 395/396, 419–432 (1999).

    Article  CAS  Google Scholar 

  13. Bunn, S. E. & Boon, P. I. What sources of organic carbon drive food webs in billabongs? A study based on stable isotope analysis. Oecologia 96, 85–94 (1993).

    Article  ADS  Google Scholar 

  14. Hargeby, A., Andersson, G., Blindow, I. & Johansson, S. Trophic web structure in a shallow eutrophic lake during a dominance shift from phytoplankton to submerged macrophytes. Hydrobiologia 279–280, 83–90 (1994).

    Article  Google Scholar 

  15. Naeem, S., Thompson, L. J., Lawler, S. P., Lawton, J. H. & Woodfin, R. M. Empirical evidence that declining species diversity may alter the performance of terrestrial ecosystems. Phil. Trans. R. Soc. Lond. B 347, 249–262 (1995).

    Article  ADS  Google Scholar 

  16. Tilman, D., Wedin, D. & Knops, J. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379, 718–720 (1996).

    Article  CAS  ADS  Google Scholar 

  17. Symstad, A. J., Tilman, D., Willson, J. & Knops, J. M. H. Species loss and ecosystem functioning: effects of species identity and community composition. Oikos 81, 389–397 (1998).

    Article  Google Scholar 

  18. Hector, A. et al. Plant diversity and productivity experiments in European grasslands. Science 286, 1123–1127 (1999).

    Article  CAS  Google Scholar 

  19. Robinson, G. G. C., Gurney, S. E. & Goldsborough, L. G. The primary productivity of benthic and planktonic algae in a prairie wetland under constrolled water-level regimes. Wetlands 17, 182–194 (1997).

    Article  Google Scholar 

  20. Carlson, R. E. A trophic state index for lakes. Limnol. Oceanogr. 22, 361–369 (1977).

    Article  CAS  ADS  Google Scholar 

  21. Tilman, D., Lehman, C. L. & Thomson, K. T. Plant diversity and ecosystem productivity: theoretical considerations. Proc. Natl Acad. Sci. USA 94, 1857–1861 (1997).

    Article  CAS  ADS  Google Scholar 

  22. Moeller, R. E., Burkholder, J. M. & Wetzel, R. G. Significance of sedimentary phosphorus to a rooted submersed macrophyte (Najas flexilis (Willd.) Rostk. and Schmidt) and its algal epiphytes. Aqu. Bot. 32, 261–281 (1988).

    Article  Google Scholar 

  23. Burkholder, J. M. & Wetzel, R. G. Microbial colonization on natural and artificial macrophytes in a phosphorus-limited, hardwater lake. J. Phycol. 25, 55–65 (1989).

    Article  Google Scholar 

  24. Burkholder, J. M. & Wetzel, R. G. Epiphytic alkaline phosphatase on natural and artificial plants in an oligotrophic lake: Re-evaluation of the role of macrophytes as a phosphorus source for epiphytes. Limnol. Oceanogr. 35, 736–747 (1990).

    Article  CAS  ADS  Google Scholar 

  25. Loreau, M. Biodiversity and ecosystem functioning: recent theoretical advances. Oikos 91, 3–17 (2000).

    Article  Google Scholar 

  26. Troumbis, A. Y., Dimitrakopoulos, P. G., Siamantziouras, A.-S. D. & Memtsas, D. Hidden diversity and productivity patterns in mixed Mediterranean grasslands. Oikos 90, 549–559 (2000).

    Article  Google Scholar 

  27. Wardle, D. A. Is “sampling effect” a problem for experiments investigating biodiversity–ecosystem function relationships? Oikos 87, 403–407 (1999).

    Article  Google Scholar 

  28. Huston, M. A. Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity. Oecologia 110, 449–460 (1997).

    Article  ADS  Google Scholar 

  29. Ward, J. V. Riverine landscapes: biodiversity patterns, disturbance regimes, and aquatic conservation. Biol. Cons. 83, 269–278 (1998).

    Article  Google Scholar 

  30. Wetzel, R. G. & Likens, G. E. Limnological analyses, Second edition (Springer, New York, 1991).

    Book  Google Scholar 

Download references

Acknowledgements

We thank J. Chase, R. Hilderbrand, L. Pitelka, A. Symstad, D. Tilman and R. G. Wetzel for comments; and R. Chi, C. Hendrix, R. Young, E. Toman, M. Amacher and many volunteers and temporary technicians for field and laboratory help. Funding was provided by the US Fish and Wildlife Service, Utah Division of Wildlife Resources, Utah State University Ecology Center and the Society of Wetland Scientists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina A. M. Engelhardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engelhardt, K., Ritchie, M. Effects of macrophyte species richness on wetland ecosystem functioning and services. Nature 411, 687–689 (2001). https://doi.org/10.1038/35079573

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35079573

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing