Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Possible displacement of the climate signal in ancient ice by premelting and anomalous diffusion


The best high-resolution records of climate over the past few hundred millennia are derived from ice cores retrieved from Greenland and Antarctica1,2,3. The interpretation of these records relies on the assumption that the trace constituents used as proxies for past climate have undergone only modest post-depositional migration. Many of the constituents are soluble impurities found principally in unfrozen liquid that separates the grain boundaries in ice sheets. This phase behaviour, termed premelting, is characteristic of polycrystalline material4,5. Here we show that premelting influences compositional diffusion in a manner that causes the advection of impurity anomalies towards warmer regions while maintaining their spatial integrity. Notwithstanding chemical reactions that might fix certain species against this prevailing transport, we find that—under conditions that resemble those encountered in the Eemian interglacial ice of central Greenland (from about 125,000 to 115,000 years ago)—impurity fluctuations may be separated from ice of the same age by as much as 50 cm. This distance is comparable to the ice thickness of the contested sudden cooling events in Eemian ice from the GRIP core.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: The hydraulic system of polycrystalline ice.
Figure 2: The temperature14 as a function of depth in the GRIP ice core and the corresponding interstitial concentration of H2SO4.
Figure 3: The physical interactions that cause molecular diffusion to alter the cB-profile in an advective fashion.
Figure 4: Anomalous diffusion of H2SO4 under conditions found at Summit, Greenland.


  1. Dansgaard, W. et al. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218–220 (1993).

    Article  ADS  Google Scholar 

  2. Petit, J. R. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999).

    Article  ADS  CAS  Google Scholar 

  3. Alley, R. B. Ice-core evidence of abrupt climate changes. Proc. Natl Acad. Sci. USA 97, 1331–1334 (2000).

    Article  ADS  CAS  Google Scholar 

  4. Dash, J. G., Fu, H. Y. & Wettlaufer, J. S. The premelting of ice and its environmental consequences. Rep. Prog. Phys. 58, 115–167 (1995).

    Article  ADS  CAS  Google Scholar 

  5. Wettlaufer, J. S. Ice surfaces: Macroscopic effects of microscopic structure. Phil. Trans. R. Soc. Lond. A 357, 3403–3425 (1999).

    Article  ADS  CAS  Google Scholar 

  6. Paterson, W. S. B. The Physics of Glaciers 3rd edn, 8–25 (Pergamon, Oxford, 1994).

    Book  Google Scholar 

  7. Wolff, E. W. in Chemical Exchange Between the Atmosphere and Polar Ice (eds Wolff, E. W. & Bales, R. C.) 541–560 (NATO ASI Series I, Vol. 43, Springer, Berlin, 1996).

    Google Scholar 

  8. Ramseier, R. O. Self-diffusion of tritium in natural and synthetic ice monocrystals. J. Appl. Phys. 38, 2553–2556 (1967).

    Article  ADS  CAS  Google Scholar 

  9. Nye, J. F. in Physics and Chemistry of Ice (eds Maeno, N. & Hondoh, T.) 200–205 (Hokkaido Univ. Press, 1992).

    Google Scholar 

  10. Nye, J. F. The geometry of water veins and nodes in polycrystalline ice. J. Glac. 35, 17–22 (1989).

    Article  ADS  Google Scholar 

  11. Mader, H. M. Observations of the water-vein system in polycrystalline ice. J. Glac. 38, 333–347 (1992).

    Article  ADS  Google Scholar 

  12. Nye, J. F. Diffusion of isotopes in the annual layers of ice sheets. J. Glac. 44, 467–468 (1998).

    Article  ADS  CAS  Google Scholar 

  13. Johnsen, S. J. et al. in Ice Physics and the Natural Environment (eds Wettlaufer, J. S., Dash, J. G. & Untersteiner, N.) 89–107 (NATO ASI Series I, Vol. 56, Springer, Berlin, 1999).

    Book  Google Scholar 

  14. Gundestrup, N. S., Dahl-Jensen, D., Johnsen, S. J. & Rossi, A. Bore-hole survey at dome GRIP—1991. Cold Reg. Sci. Technol. 21, 399–402 (1993).

    Article  Google Scholar 

  15. Cuffey, K. M. et al. Large Arctic temperature-change at the Wisconsin–Holocene glacial transition. Science 270, 455–458 (1995).

    Article  ADS  CAS  Google Scholar 

  16. Weast, R. C. (ed.) CRC Handbook of Chemistry and Physics 68th edn, D219–D269 (CRC Press, Boca Raton, 1987).

    Google Scholar 

  17. Mulvaney, R., Wolff, E. W. & Oates, K. Sulphuric acid at grain-boundaries in Antarctic ice. Nature 331, 247–249 (1988).

    Article  ADS  CAS  Google Scholar 

  18. Fukazawa, H., Sugiyama, K., Mae, S. J., Narita, H. & Hondoh, T. Acid ions at triple junction of Antarctic ice observed by Raman scattering. Geophys. Res. Lett. 25, 2845–2848 (1998).

    Article  ADS  CAS  Google Scholar 

  19. Wood, S. E. & Battino, R. Thermodynamics of Chemical Systems (Cambridge Univ. Press, Cambridge, 1990).

    Book  Google Scholar 

  20. Gross, G. W., Chen-ho, W., Bryant, L. & McKee, C. Concentration dependent solute redistribution at the ice/water phase boundary. II. Experimental investigation. J. Chem. Phys. 62, 3085–3092 (1975).

    Article  ADS  CAS  Google Scholar 

  21. Thorsteinsson, T., Kipfstuhl, J., Eicken, H., Johnsen, S. J. & Fuhrer, K. Crystal size variations in Eemian-age ice from the GRIP ice core, central Greenland. Earth Planet. Sci. Lett. 131, 381–394 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Steffensen, J. P., Clausen, H. B., Hammer, C. U., Legrand, M. & De Angelis, M. The chemical composition of cold events within the Eemian section of the Greenland Ice Core Project ice core from Summit. J. Geophys. Res. 102, 26747–26754 (1997).

    Article  ADS  CAS  Google Scholar 

  23. Alley, R. B. et al. Comparison of deep ice cores. Nature 373, 393–394 (1995).

    Article  ADS  CAS  Google Scholar 

  24. Zielinski, G. A. Use of paleo-records in determining variability within the volcanism-climate system. Quat. Sci. Rev. 19, 417–438 (2000).

    Article  ADS  Google Scholar 

  25. Smith, C. S. Grains, phases and interfaces: An introduction to microstructure. Trans. Metall. Soc. AIME 175, 15–51 (1948).

    Google Scholar 

  26. Ohtomo, M. & Wakahama, G. Growth-rate of recrystallization in ice. J. Phys. Chem. 87, 4139–4142 (1983).

    Article  CAS  Google Scholar 

  27. Dansgaard, W. & Johnsen, S. J. A flow model and a time scale for the ice core from Camp Century, Greenland. J. Glac. 8, 215–223 (1969).

    Article  ADS  Google Scholar 

  28. Cuffey, K. M. & Clow, G. D. Temperature, accumulation, and ice sheet elevation in central Greenland through the last deglacial transition. J. Geophys. Res. 102, 26383–26396 (1997).

    Article  ADS  Google Scholar 

  29. Thorsteinsson, T., Kipfstuhl, J. & Miller, H. Textures and fabrics in the GRIP ice core. J. Geophys. Res. 102, 26583–26599 (1997).

    Article  ADS  Google Scholar 

  30. De la Chapelle, S., Castelnau, O., Lipenkov, V. & Duval, P. Dynamic recrystallization and texture development in ice as revealed by the study of deep ice cores in Antarctica and Greenland. J. Geophys. Res. 103, 5091–5105 (1998).

    Article  ADS  Google Scholar 

Download references


We acknowledge R. Alley, J. G. Dash, D. P. Winebrenner, S. G. Warren, G. W. Gross, S. F. Johnsen, J. F. Nye, E. J. Steig, J. P. Steffensen and E. W. Wolff for discussions that have influenced this work. We also thank H. M. Mader for providing the photograph for Figure 1b. Support for this research has been provided by the US National Science Foundation.

Author information

Authors and Affiliations


Corresponding author

Correspondence to A. W. Rempel.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rempel, A., Waddington, E., Wettlaufer, J. et al. Possible displacement of the climate signal in ancient ice by premelting and anomalous diffusion. Nature 411, 568–571 (2001).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing