Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Many-body and correlation effects in semiconductors

Abstract

Solids consist of 1022–1023 particles per cubic centimetre, interacting through infinite-range Coulomb interactions. The linear response of a solid to a weak external perturbation is well described by the concept of non-interacting ‘quasiparticles’ first introduced by Landau. But interactions between quasiparticles can be substantial in dense systems. For example, studies over the past decade have shown that Coulomb correlations between quasiparticles dominate the nonlinear optical response of semiconductors, in marked contrast to the behaviour of atomic systems. These Coulomb correlations and other many-body interactions are important not only for semiconductors, but also for all condensed-matter systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strong negative time-delay signals in time-integrated four-wave mixing (FWM) from GaAs quantum wells.
Figure 2: Delayed rise of FWM signals from GaAs quantum wells.
Figure 3: FWM signals due to high-order correlation in GaAs.
Figure 4: Wigner-function representation of resonant Rayleigh scattering from GaAs quantum wells.
Figure 5: Signature of higher-order correlations in the coherent response of ZnSe.
Figure 6: Reversible electron–photon scattering in GaAs.
Figure 7: Coherent response of GaAs in the quantum Hall regime.
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Leo, K. et al. Effects of coherent polarization interactions on time-resolved degenerate four-wave mixing. Phys. Rev. Lett. 65, 1340–1343 (1990).

    Article  ADS  CAS  Google Scholar 

  2. Kim, D. S. et al. Unusually slow temporal evolution of femtosecond four-wave-mixing signals in intrinsic GaAs quantum wells: direct evidence for the dominance of interaction effects. Phys. Rev. Lett. 69, 2725–2728 (1992).

    Article  ADS  CAS  Google Scholar 

  3. Weiss, S., Mycek, M.-A., Bigot, J.-Y., Schmitt-Rink, S. & Chemla, D. S. Collective effects in excitonic free induction decay: do semiconductors and atoms emit coherent light in different ways? Phys. Rev. Lett. 69, 2685–2689 (1992).

    Article  ADS  CAS  Google Scholar 

  4. Allen, L. & Eberly, J. H. Optical Resonance and Two-Level Atoms (Wiley Interscience, New York, 1975).

    Google Scholar 

  5. Haug, H. & Koch, S. W. Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, Singapore, 1993).

    Book  Google Scholar 

  6. Kner, P., Bar-Ad, S., Marquezini, M. V., Chemla, D. S. & Schäfer, W. Magnetically enhanced exciton–exciton correlations in semiconductors. Phys. Rev. Lett. 78, 1319–1322 (1997).

    Article  ADS  CAS  Google Scholar 

  7. Birkedal, D., Shah, J. & Pfeiffer, L. N. Coherent secondary emission from resonantly excited two-exciton states: An intrinsic phenomenon. Phys. Rev. B 60, 15585–15588 (1999).

    Article  ADS  CAS  Google Scholar 

  8. Wehner, M. U., Ulm, M. H., Chemla, D. S. & Wegener, M. Coherent control of electron-LO-phonon scattering in bulk GaAs. Phys. Rev. Lett. 80, 1992–1995 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Rossi, F., Brunetti, R. & Jacoboni, C. in Hot Carriers in Semiconductor Nanostructures: Physics and Applications (ed. Shah, J.) 153–188 (Academic, Boston, 1992).

    Book  Google Scholar 

  10. Haug, H. & Jauho, A. P. Quantum Kinetics in Transport and Optics of Semiconductors (ed. Klitzing, K. V.) (Springer Series in Solid-State Sciences, Springer, Berlin, 1996).

    Google Scholar 

  11. Steel, D. G., Wang, H., Jiang, M., Ferrio, K. B. & Cundiff, S. T. in Coherent Optical Interactions in Solids (ed. Phillips, R. T.) 157–180 (Plenum, New York, 1994).

    Google Scholar 

  12. Mukamel, S. Principles of Nonlinear Optical Spectroscopy (Oxford Univ. Press, New York, 1995).

    Google Scholar 

  13. Binder, R. & Koch, S. W. Nonequilibrium semiconductor dynamics. Prog. Quant. Electron. 19, 307–462 (1995).

    Article  ADS  Google Scholar 

  14. Shah, J. Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures (Springer, Heidelberg, 1999).

    Book  Google Scholar 

  15. Chemla, D. S. in Nonlinear Optics in Semiconductors (ed. Garmire, E. & Kost, A. R.) 175–256 (Academic, New York, 1999).

    Google Scholar 

  16. Khitrova, G., Gibbs, H. M., Jahnke, F., Kira, M. & Koch, S. W. Nonlinear optics of normal-mode-coupling in semiconductor microcavities. Rev. Mod. Phys. 71, 1591–1639 (1999).

    Article  ADS  Google Scholar 

  17. Perakis, I. E. & Shahbazyan, T. V. Canonical transformation approach to the ultrafast nonlinear optical dynamics of semiconductors. Int. J. Mod. Phys. B 13, 869–893 (1999).

    Article  ADS  Google Scholar 

  18. Perakis, I. E. & Shahbazyan, T. V. Many-body correlation effects in the ultrafast non-linear optical response of confined Fermi seas. Surf. Sci. Rep. 40, 3–74 (2000).

    Article  ADS  Google Scholar 

  19. Wegener, M., Chemla, D. S., Schmitt-Rink, S. & Schäfer, W. Line shape of time-resolved four-wave mixing. Phys. Rev. A 42, 5675–5683 (1990).

    Article  ADS  CAS  Google Scholar 

  20. Henneberger, F., Schmitt-Rink, S. & Göbel, E. O. (eds) Optics of Semiconductor Nanostructures (Akademie, Berlin, 1993).

    Google Scholar 

  21. Phillips, R. T. (ed.) Coherent Optical Processes in Semiconductors (Plenum, New York, 1994).

    Book  Google Scholar 

  22. Schmitt-Rink, S. & Chemla, D. S. Collective excitations and the dynamical Stark effect in a coherently driven exciton system. Phys. Rev. Lett. 57, 2752–2755 (1986).

    Article  ADS  CAS  Google Scholar 

  23. Lindberg, M. & Koch, S. W. Effective Bloch equations for semiconductors. Phys. Rev. B 38, 3342–3350 (1988).

    Article  ADS  CAS  Google Scholar 

  24. Pines, D. & Nozieres, P. The Theory of Quantum Liquids (Benjamin, New York, 1966).

    MATH  Google Scholar 

  25. Bloch, F. Nuclear induction. Phys. Rev. 70, 460–474 (1946).

    Article  ADS  CAS  Google Scholar 

  26. Schmitt-Rink, S., Mukamel, S., Leo, K., Shah, J. & Chemla, D. S. Stochastic theory of time-resolved four-wave mixing in interacting media. Phys. Rev. A 44, 2124–2129 (1991).

    Article  ADS  CAS  Google Scholar 

  27. Schäfer, W., Jahnke, F. & Schmitt-Rink, S. Many-particle effects on transient four-wave-mixing signals in semiconductors. Phys. Rev. B 47, 1217–1220 (1993).

    Article  ADS  Google Scholar 

  28. Axt, V. M. & Stahl, A. A dynamics-controlled truncation scheme for the hierarchy of density matrices in semiconductor optics. Z. Phys. B 93, 195–204 (1994).

    Article  ADS  CAS  Google Scholar 

  29. Maialle, M. Z. & Sham, L. J. Interacting electron theory of coherent nonlinear response. Phys. Rev. Lett. 73, 3310–3313 (1994).

    Article  ADS  CAS  Google Scholar 

  30. Östreich, T., Schönhammer, K. & Sham, L. J. Exciton–exciton correlation in the nonlinear optical regime. Phys. Rev. Lett. 74, 4698–4701 (1995).

    Article  ADS  Google Scholar 

  31. Schäfer, W., Lövenich, R., Fromer, N. A. & Chemia, D. S. From coherently excited highly correlated states to incoherent relaxation processes in semiconductors. Phys. Rev. Lett. 86, 344–347 (2001).

    Article  ADS  Google Scholar 

  32. Bolton, S. R., Neukirch, U., Sham, L. J., Chemla, D. S. & Axt, V. M. Demonstration of sixth-order Coulomb correlations in a semiconductor single quantum well. Phys. Rev. Lett. 85, 2002–2005 (2000).

    Article  ADS  CAS  Google Scholar 

  33. Meier, T., von Plessen, G., Thomas, P. & Koch, S. W. Coherent electric-field effects in semiconductors. Phys. Rev. Lett. 73, 902–905 (1994).

    Article  ADS  CAS  Google Scholar 

  34. Haring Bolivar, P. et al. Excitonic emission of THz radiation: experimental evidence of the shortcomings of the Block equation method. Phys. Rev. Lett. 78, 2232–2235 (1997).

    Article  ADS  Google Scholar 

  35. Cohen-Tannoudji, C., Dupont-Roc, J. & Grynberg, G. Atom–Photon Interactions: Basic Processes and Applications (Wiley Interscience, New York, 1992).

    Google Scholar 

  36. Kner, P. et al. Effect of magnetoexciton correlations on the coherent emission of semiconductors. Phys. Rev. B 60, 4731–4748 (1999).

    Article  ADS  CAS  Google Scholar 

  37. Lepetit, L., Cheriaux, G. & Joffre, M. Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy. J. Opt. Soc. Am. B 12, 2467–2474 (1995).

    Article  ADS  CAS  Google Scholar 

  38. Birkedal, D. & Shah, J. Femtosecond spectral interferometry of resonant secondary emission from quantum wells: resonance Rayleigh scattering in the nonergodic regime. Phys. Rev. Lett. 81, 2372–2375 (1998).

    Article  ADS  CAS  Google Scholar 

  39. Kner, P., Schafer, W., Lovenich, R. & Chemla, D. S. Coherence of four-particle correlations in semiconductors. Phys. Rev. Lett. 81, 5386–5389 (1998).

    Article  ADS  CAS  Google Scholar 

  40. Banyai, L. et al. Exciton-LO-phonon quantum kinetics: evidence of memory effects in bulk GaAs. Phys. Rev. Lett. 75, 2188–2191 (1995).

    Article  ADS  CAS  Google Scholar 

  41. Bar-Ad, S., Kner, P., Marquezini, M. V., Chemla, D. S. & El Sayed, K. Carrier dynamics in the quantum kinetic regime. Phys. Rev. Lett. 77, 3177–3180 (1996).

    Article  ADS  CAS  Google Scholar 

  42. Camescasse, F. X. et al. Ultrafast electron redistribution through Coulomb scattering in undoped GaAs: experiment and theory. Phys. Rev. Lett. 77, 5429–5432 (1996).

    Article  ADS  CAS  Google Scholar 

  43. Bar-Ad, S. & Chemla, D. S. Quantum kinetics regime during and immediately after laser excitation of semiconductors. Mater. Sci. Eng. B 48, 83–87 (1997).

    Article  Google Scholar 

  44. Fürst, C., Leitenstorfer, A., Laubereau, A. & Zimmermann, R. Quantum kinetic electron–phonon interaction in GaAs: energy nonconserving scattering events and memory effects. Phys. Rev. Lett. 78, 3733–3736 (1997).

    Article  ADS  Google Scholar 

  45. Fromer, N. A. et al. Electronic dephasing in the quantum Hall regime. Phys. Rev. Lett. 83, 4646–4649 (1999).

    Article  ADS  CAS  Google Scholar 

  46. Dodge, J. S. et al. Time-resolved optical observation of spin-wave dynamics. Phys. Rev. Lett. 83, 4650–4653 (1999).

    Article  ADS  CAS  Google Scholar 

  47. Kaindl, R. A. et al. Ultrafast mid-infrared response of YBa2Cu3O7-δ. Science 287, 470–473 (2000).

    Article  ADS  CAS  Google Scholar 

  48. Garvin, S. M., McDonald, A. H. & Platzman, P. M. Magneto-roton theory of collective excitation in the fractional quantum Hall effect. Phys. Rev. B 33, 2481–2494 (1986).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work of D.S.C. was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Office of Science, US Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagdeep Shah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chemla, D., Shah, J. Many-body and correlation effects in semiconductors. Nature 411, 549–557 (2001). https://doi.org/10.1038/35079000

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35079000

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing