Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An unusual phase transition to a second liquid vortex phase in the superconductor YBa2Cu3O7

Abstract

A magnetic field penetrates a superconductor through an array of ‘vortices’, each of which carries one quantum of flux that is surrounded by a circulating supercurrent. In this vortex state, the resistivity is determined by the dynamical properties of the vortex ‘matter’. For the high-temperature copper oxide superconductors (see ref.1 for a theoretical review), the vortex phase can be a ‘solid’, in which the vortices are pinned, but the solid can ‘melt’ into a ‘liquid’ phase, in which their mobility gives rise to a finite resistance. (This melting phenomenon is also believed to occur in conventional superconductors, but in an experimentally inaccessible part of the phase diagram2.) For the case of YBa2Cu3O7, there are indications of the existence of a critical point, at which the character of the melting changes3,4,5,6,7,8,9,10. But neither the thermodynamic nature of the melting, nor the phase diagram in the vicinity of the critical point, has been well established. Here we report measurements of specific heat and magnetization that determine the phase diagram in this material to 26 T, well above the critical point. Our results reveal the presence of a reversible second-order transition above the critical point. An unusual feature of this transition—namely, that the high-temperature phase is the less symmetric in the sense of the Landau theory11—is in accord with theoretical predictions12,13,14 of a transition to a second vortex-liquid phase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phase diagram for the vortex state in YBCO.
Figure 2: Discontinuities in specific heat and entropy at Hm and HX.
Figure 3: Magnetization and specific-heat data that are characteristic of three regions of the phase diagram.

Similar content being viewed by others

References

  1. Blatter, G., Feigel’man, M. V., Geshkenbein, V. B., Larkin, A. I. & Vinokur, V. M. Vortices in high-temperature superconductors. Rev. Mod. Phys. 66, 1125–1388 (1994).

    Article  ADS  CAS  Google Scholar 

  2. Eilenberger, G. Thermodynamic fluctuations of the order parameter in type-II superconductors near the upper critical field H c2. Phys Rev. 164, 628–635 (1967).

    Article  ADS  CAS  Google Scholar 

  3. Safar, H. et al. Experimental evidence for a multicritical point in the magnetic phase diagram for the mixed state of clean, untwinned YBa2Cu3O7. Phys. Rev. Lett. 70, 3800–3803 (1993).

    Article  ADS  CAS  Google Scholar 

  4. Nishizaki, T., Naito, T. & Kobayashi, N. Anomalous magnetization and field-driven disordering transition of a vortex lattice in untwinned YBa2Cu3Oy. Phys. Rev. B 58, 11169–11172 (1998).

    Article  ADS  CAS  Google Scholar 

  5. Roulin, M., Junod, A., Erb, A. & Walker, E. Calorimetric transitions on the melting line of the vortex system as a function of oxygen deficiency in high purity YBa2Ca3Ox. Phys. Rev. Lett. 80, 1722–1725 (1998).

    Article  ADS  CAS  Google Scholar 

  6. Roulin, M. et al. in Physics and Materials Science of Vortex State, Flux Pinning and Dynamics (eds Kossowsky, R. et al.) 489–504 (Kluwer Academic, Dordrecht, 1999).

    Book  Google Scholar 

  7. Billon, B. Étude Microcalorimétrique et Magnétique du Diagramme de Phase des Composes YBa2Cu3O7- et HgBa2CuO4+., Thesis, Univ. Grenoble 1 (1998).

    Google Scholar 

  8. Bouquet, F. Étude thermodynamique de l'état mixte dans YBa2Cu3O7-x . Thesis, Univ. Grenoble 1 (1998).

    Google Scholar 

  9. Bouquet, F. et al. in Physics and Materials Science of Vortex State, Flux Pinning and Dynamics (eds Kossowsky, R. et al.) 743–758 (Kluwer Academic, Dordrecht, 1999).

    Book  Google Scholar 

  10. Marcenat, C. et al. The vortex state of YBa2Cu3O7-δ: phase diagram; calorimetric and magnetic properties. Physica C 341–348, 949–952 (2000).

    Article  ADS  Google Scholar 

  11. Landau, L. D. & Lifshitz, E. M. in Course of Theoretical Physics 2nd edn Vol. 5, Statistical Physics Ch. VIII 257 (Pergamon, Oxford, 1969).

    Google Scholar 

  12. Tešanović, Z. Low-magnetic-field critical behavior in strongly type-II superconductors. Phys. Rev. B 51, 16204–16210 (1995).

    Article  ADS  Google Scholar 

  13. Tešanović, Z. Extreme type-II superconductors in a magnetic field: A theory of critical fluctuations. Phys. Rev. B 59, 6449–6474 (1999).

    Article  ADS  Google Scholar 

  14. Nguyen, A. K. & Sudbø, A. Topological phase fluctuations, amplitude fluctuations, and criticality in extreme type-II superconductors. Phys Rev. B 60, 15307–15331 (1999).

    Article  ADS  CAS  Google Scholar 

  15. Liang, R., Bonn, D. A. & Hardy, W. N. Discontinuities of reversible magnetization in untwinned YBCO single crystals at the first order vortex melting transition. Phys. Rev. Lett. 76, 835–838 (1996).

    Article  ADS  CAS  Google Scholar 

  16. Fendrich, J. A. et al. Static and dynamic vortex phases in YBa2Cu3O7-δ. Phys. Rev. Lett. 77, 2073–2076 (1996).

    Article  ADS  CAS  Google Scholar 

  17. Schilling, A. et al. Calorimetric measurement of the latent heat of vortex-lattice melting in untwinned YBa2Cu3O7-δ. Nature 382, 791–793 (1996).

    Article  ADS  CAS  Google Scholar 

  18. Fisher, D. S., Fisher, M. P. A. & Huse, D. A. Thermal fluctuations, quenched disorder, phase transitions and transport in type-II superconductors. Phys. Rev. B 43, 130–159 (1991).

    Article  ADS  CAS  Google Scholar 

  19. Giamarchi, T. & Le Doussal, P. Phase diagrams of flux lattices with disorder. Phys. Rev. B 55, 6577–6583 (1997).

    Article  ADS  CAS  Google Scholar 

  20. Zeldov, E. et al. Thermodynamic observation of first-order vortex-lattice melting transition in Bi2Sr2CaCu2O8. Nature 375, 373–376 (1995).

    Article  ADS  CAS  Google Scholar 

  21. Khaykovich, B. et al. Vortex-lattice phase transitions in Bi2Sr2CaCu2O8 crystals with different oxygen stoichiometry. Phys. Rev. Lett. 76, 2555–2558 (1996).

    Article  ADS  CAS  Google Scholar 

  22. Cubitt, R. et al. Direct observation of magnetic flux lattice melting and decomposition in the high-Tc superconductor Bi2.15Sr1.95CaCu2O8+x. Nature 365, 407–411 (1993).

    Article  ADS  CAS  Google Scholar 

  23. Deligiannis, K. et al. New features in the vortex phase diagram of YBa2Ca3O7-δ. Phys. Rev. Lett. 79, 2121–2124 (1997).

    Article  ADS  CAS  Google Scholar 

  24. Sullivan, P. F. & Seidel, G. Steady-state, ac-temperature calorimetry. Phys. Rev. 173, 679–685 (1968).

    Article  ADS  CAS  Google Scholar 

  25. Reichhardt, C., van Otterlo, A. & Zimányi, G. T. Vortices freeze like window glass: the vortex molasses scenario. Phys. Rev. Lett. 84, 1994–1997 (2000).

    Article  ADS  CAS  Google Scholar 

  26. Williams, G. A. Vortex-loop phase transitions in liquid helium, cosmic strings, and high-Tc superconductors. Phys. Rev. Lett. 82, 1201–1204 (1999).

    Article  ADS  CAS  Google Scholar 

  27. Onsager, L. Statistical hydrodynamics. Nuovo Cimento Suppl. 6, 279–287 (1949).

    Article  MathSciNet  CAS  Google Scholar 

Download references

Acknowledgements

The measurements above 18 T were performed in the Grenoble High Magnetic Field Laboratory. Work at Argonne and Berkeley was supported by the US DOE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Bouquet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouquet, F., Marcenat, C., Steep, E. et al. An unusual phase transition to a second liquid vortex phase in the superconductor YBa2Cu3O7. Nature 411, 448–451 (2001). https://doi.org/10.1038/35078016

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35078016

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing