Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Microarrays: lost in a storm of data?

Abstract

Microarray expression profiling is instrumental to our understanding of the function of the genome. Resolution of functionally relevant expression patterns will require the analysis of large data sets compiled from multiple investigators. For this and other reasons, I argue that it is crucial for array data to be publicly shared in a format as close to the 'raw data' as possible. Issues such as protection of intellectual property, ensuring quality of the data, and the format and timing for sharing array data are also discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Linearity in microarray results.
Figure 2: Nonlinearity in microarray results.
Figure 3: Position effects in microarray analysis.

Similar content being viewed by others

References

  1. Iyer, V. R. et al. The transcriptional program in the response of human fibroblasts to serum. Science 283, 83–87 (1999).

    Article  CAS  Google Scholar 

  2. Hughes, T. R. et al. Functional discovery via a compendium of expression profiles. Cell 102, 109–126 (2000).

    Article  CAS  Google Scholar 

  3. Thibault, C. et al. Expression profiling of neural cells reveals specific patterns of ethanol-responsive gene expression. Mol. Pharmacol. 58, 1593–1600 (2000).

    Article  CAS  Google Scholar 

  4. Golub, T. R. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999).

    Article  CAS  Google Scholar 

  5. Lewohl, J. M. et al. Gene expression in human alcoholism: microarray analysis of frontal cortex. Alcohol Clin. Exp. Res. 24, 1873–1882 (2000).

    Article  CAS  Google Scholar 

  6. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    Article  CAS  Google Scholar 

  7. Raychaudhuri, S., Sutphin, P. D., Chang, J. T. & Altman, R. B. Basic microarray analysis: grouping and feature reduction. Trends Biotechnol. 19, 189–193 (2001).

    Article  CAS  Google Scholar 

  8. Brown, M. P. et al. Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc. Natl Acad. Sci. USA 97, 262–267 (2000).

    Article  CAS  Google Scholar 

  9. Dudoit, S., Yang, Y. H., Callow, M. J. & Speed, T. J. Statistical Methods for Identifying Differentially Expressed Genes in Replicated cDNA Microarray Experiments. Technical Report 578, Stanford Univ. School of Medicine (2000).

    Google Scholar 

  10. Li, C. & Wong, W. H. Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc. Natl Acad. Sci. USA 98, 31–36 (2001).

    Article  CAS  Google Scholar 

  11. Yue, H. et al. An evaluation of the performance of cDNA microarrays for detecting changes in global mRNA expression. Nucleic Acids Res. 29, E41 (2001).

    Article  CAS  Google Scholar 

  12. Tusher, V. G., Tibshirani, R. & Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl Acad. Sci. USA 98, 5116–5121 (2001).

    Article  CAS  Google Scholar 

  13. Lee, M. L., Kuo, F. C., Whitmore, G. A. & Sklar, J. Importance of replication in microarray gene expression studies: statistical methods and evidence from repetitive cDNA hybridizations. Proc. Natl Acad. Sci. USA 97, 9834–9839 (2000).

    Article  CAS  Google Scholar 

  14. Toronen, P., Kolehmainen, M., Wong, G. & Castren, E. Analysis of gene expression data using self-organizing maps. FEBS Lett. 451, 142–146 (1999).

    Article  CAS  Google Scholar 

  15. Eisen, M. B., Spellman, P. T., Brown, P. O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA 95, 14863–14868 (1998).

    Article  CAS  Google Scholar 

  16. Sherlock, G. Analysis of large-scale gene expression data. Curr. Opin. Immunol. 12, 201–205 (2000).

    Article  CAS  Google Scholar 

  17. Jenssen, T. K., Laegreid, A., Komorowski, J. & Hovig, E. A literature network of human genes for high-throughput analysis of gene expression. Nature Genet. 28, 21–28 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to thank all the members of the Miles laboratory for their enthusiasm, dedication and many helpful discussions. In particular, I thank Li Zhang for stimulating discussions regarding the analysis of microarray data. I also would like to acknowledge support from the National Institute on Alcohol Abuse and Alcoholism, the National Institute on Drug Abuse and the State of California, through a grant to the University of California for research on alcoholism and drug abuse.

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

Brown laboratory

Gene Expression Omnibus

MGED III

Speed Group Microarray page

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miles, M. Microarrays: lost in a storm of data?. Nat Rev Neurosci 2, 441–443 (2001). https://doi.org/10.1038/35077582

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35077582

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing