Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A new role for cryptochrome in a Drosophila circadian oscillator

Abstract

Cryptochromes are flavin/pterin-containing proteins that are involved in circadian clock function in Drosophila and mice. In mice, the cryptochromes Cry1 and Cry2 are integral components of the circadian oscillator within the brain1,2,3,4,5,6 and contribute to circadian photoreception in the retina7. In Drosophila, cryptochrome (CRY) acts as a photoreceptor that mediates light input to circadian oscillators in both brain and peripheral tissue8,9,10,11,12. A Drosophila cry mutant, cryb, leaves circadian oscillator function intact in central circadian pacemaker neurons but renders peripheral circadian oscillators largely arrhythmic. Although this arrhythmicity could be caused by a loss of light entrainment, it is also consistent with a role for CRY in the oscillator. A peripheral oscillator drives circadian olfactory responses in Drosophila antennae13. Here we show that CRY contributes to oscillator function and physiological output rhythms in the antenna during and after entrainment to light–dark cycles and after photic input is eliminated by entraining flies to temperature cycles. These results demonstrate a photoreceptor-independent role for CRY in the periphery and imply fundamental differences between central and peripheral oscillator mechanisms in Drosophila.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Olfactory responses of wild-type and cryb mutant Drosophila under LD and DD conditions.
Figure 2: Examples of clock-gene-controlled luciferase (luc) activity rhythms from Drosophila antennae during LD.
Figure 3: EAG responses of wild-type and cryb flies during and after temperature entrainment.

References

  1. 1

    van der Horst, G. T. J. et al. Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 398, 627–630 (1999).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Vitaterna, M. H. et al. Differential regulation of mammalian Period genes and circadian rhythmicity by cryptochromes 1 and 2. Proc. Natl Acad. Sci. USA 96, 12114–12119 (1999).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Kume, K. et al. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98, 193–205 (1999).

    CAS  Article  Google Scholar 

  4. 4

    Griffin, E. A. J., Staknis, D. & Weitz, C. J. Light-independent role of CRY1 and CRY2 in the mammalian circadian clock. Science 286, 768–771 (1999).

    CAS  Article  Google Scholar 

  5. 5

    Okamura, H. et al. Photic induction of mPer1 and mPer2 in Cry-deficient mice lacking a biological clock. Science 286, 2531–2534 (1999).

    CAS  Article  Google Scholar 

  6. 6

    Shearman, L. P. et al. Interacting molecular loops in the mammalian circadian clock. Science 288, 1013–1019 (2000).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Selby, C. P., Thompson, C., Schmitz, T. M., Van Gelder, R. N. & Sancar, A. Functional redundancy of cryptochromes and classical photoreceptors for nonvisual ocular photoreception in mice. Proc. Natl Acad. Sci. USA 97, 14697–14702 (2000).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Stanewsky, R. et al. The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell 95, 681–692 (1998).

    CAS  Article  Google Scholar 

  9. 9

    Emery, P., So, W. V., Kaneko, M., Hall, J. C. & Rosbash, M. CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell 95, 669–679 (1998).

    CAS  Article  Google Scholar 

  10. 10

    Ishikawa, T. et al. DCRY is a Drosophila photoreceptor protein implicated in light entrainment of circadian rhythm. Genes Cells 4, 57–65 (1999).

    CAS  Article  Google Scholar 

  11. 11

    Emery, P. et al. CRY is a deep brain circadian photoreceptor. Neuron 26, 493–504 (2000).

    CAS  Article  Google Scholar 

  12. 12

    Emery, P., Stanewsky, R., Hall, J. C. & Rosbash, M. A unique circadian-rhythm photoreceptor. Nature 404, 456–457 (2000).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Krishnan, B., Dryer, S. E. & Hardin, P. E. Circadian rhythms in olfactory responses of Drosophila melanogaster. Nature 400, 375–378 (1999).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Plautz, J. D., Kaneko, M., Hall, J. C. & Kay, S. A. Independent photoreceptive circadian clocks throughout Drosophila. Science 278, 1632–1635 (1997).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Plautz, J. D. et al. Quantitative analysis of Drosophila period gene transcription in living animals. J. Biol. Rhythms 12, 204–217 (1997).

    CAS  Article  Google Scholar 

  16. 16

    Stanewsky, R., Jamison, C. F., Plautz, J. D., Kay, S. A. & Hall, J. C. Multiple circadian-regulated elements contribute to cycling period gene expression in Drosophila. EMBO J. 16, 5006–5018 (1997).

    CAS  Article  Google Scholar 

  17. 17

    Wheeler, D. A., Hamblen-Coyle, M. J., Dushay, M. S. & Hall, J. C. Behavior in light-dark cycles of Drosophila mutants that are arrythmic, blind or both. J. Biol. Rhythms 8, 67–94 (1993).

    CAS  Article  Google Scholar 

  18. 18

    Ceriani, M. F. et al. Light-dependent sequestration of TIMELESS by CRYPTOCHROME. Science 285, 553–556 (1999).

    CAS  Google Scholar 

  19. 19

    Field, M. D. et al. Analysis of clock proteins in mouse SCN demonstrates phylogenetic divergence of the circadian clockwork and resetting mechanisms. Neuron 25, 437–447 (2000).

    CAS  Article  Google Scholar 

  20. 20

    Power, J., Ringo, J. & Dowse, H. The role of light in the initiation of circadian activity rhythms of adult Drosophila melanogaster. J. Neurogenet. 9, 227–238 (1995).

    CAS  Article  Google Scholar 

  21. 21

    Brandes, C. et al. Novel features of Drosophila per transcription revealed by real-time luciferase reporting. Neuron 16, 687–692 (1996).

    CAS  Article  Google Scholar 

  22. 22

    Chatfield, C. The Analysis of Time Series (Chapman and Hall/CRC, London, 1999).

    Google Scholar 

  23. 23

    Dowse, H. B. & Ringo, J. M. The search for hidden periodicities in biological time series revisited. J. Theor. Biol. 139, 487–515 (1989).

    Article  Google Scholar 

  24. 24

    Dowse, H. et al. A congenital heart defect in Drosophila caused by an action-potential mutation. J. Neurogenet. 10, 153–168 (1995).

    CAS  Article  Google Scholar 

  25. 25

    Johnson, E., Ringo, J., Bray, N. & Dowse, H. Genetic and pharmacological identification of ion channels central to the cardiac pacemaker. J. Neurogenet. 12, 1–24 (1998).

    Article  Google Scholar 

  26. 26

    Dowse, H. B. & Ringo, J. M. Comparisons between “periodograms” and spectral analysis: apples are apples after all. J. Theor. Biol. 148, 139–144 (1991).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank R. Stanewsky for comments on the manuscript and additional tim–luc lines. This work was supported by US NIH grants to J.C.H., P.E.H. and S.E.D.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paul E. Hardin.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Krishnan, B., Levine, J., Lynch, M. et al. A new role for cryptochrome in a Drosophila circadian oscillator. Nature 411, 313–317 (2001). https://doi.org/10.1038/35077094

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing