Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago


Variations in the amount of solar radiation reaching the Earth are thought to influence climate, but the extent of this influence on timescales of millennia to decades is unclear. A number of climate records show correlations between solar cycles and climate1, but the absolute changes in solar intensity over the range of decades to millennia are small2 and the influence of solar flux on climate is not well established. The formation of stalagmites in northern Oman has recorded past northward shifts of the intertropical convergence zone3, whose northward migration stops near the southern shoreline of Arabia in the present climate4. Here we present a high-resolution record of oxygen isotope variations, for the period from 9.6 to 6.1 kyr before present, in a Th–U-dated stalagmite from Oman. The δ18O record from the stalagmite, which serves as a proxy for variations in the tropical circulation and monsoon rainfall, allows us to make a direct comparison of the δ18O record with the Δ14C record from tree rings5, which largely reflects changes in solar activity6,7. The excellent correlation between the two records suggests that one of the primary controls on centennial- to decadal-scale changes in tropical rainfall and monsoon intensity during this time are variations in solar radiation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Plot of age versus depth for stalagmite H5.
Figure 2: Profiles of H5 δ18O values and atmospheric Δ14C.
Figure 3: Measured (dashed line) and optimized (solid line) Th–U age scales for stalagmite H5.
Figure 4: Frequency analysis of the H5 δ18O record for the entire sample and for the high-resolution interval.
Figure 5: Cross-spectral analysis30 of the tuned H5 δ18O record for the entire studied sample versus the Δ14C record (ref. 4).


  1. 1

    Hoyt, D. V. & Schatten, K. H. The Role of the Sun in Climate Change (Oxford Univ. Press, New York, 1997).

    Book  Google Scholar 

  2. 2

    Fligge, M. & Solanki, S. K. The solar spectral irradiance since 1700. Geophys. Res. Lett. 26, 2465–2468 (1999).

    ADS  Article  Google Scholar 

  3. 3

    Burns, S. J., Matter, A., Frank, N. & Mangini, A. Speleothem-based paleoclimate record from northern Oman. Geology 26, 499–502 (1998).

    ADS  Article  Google Scholar 

  4. 4

    Hastenrath, S. Climate and Circulation of the Tropics (Reidel, Boston, 1985).

    Book  Google Scholar 

  5. 5

    Stuiver, M. et al. INTCAL98 Radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon 40, 1041–1083 (1998).

    CAS  Article  Google Scholar 

  6. 6

    Beer, J., Mende, W. & Stellmacher, R. The role of the sun in climate forcing. Quat. Sci. Rev. 19, 403–415 (2000).

    ADS  Article  Google Scholar 

  7. 7

    Stuiver, M. & Braziunas, T. F. Sun, ocean climate and atmospheric 14CO2: an evaluation of causal and spectral relationships. Holocene 3, 289–305 (1993).

    ADS  Article  Google Scholar 

  8. 8

    Sontakke, N. A., Plant, G. B. & Singh, N. Construction of all-India summer monsoon rainfall series for the period 1844-1991. J. Clim. 6, 1807–1811 (1993).

    ADS  Article  Google Scholar 

  9. 9

    Clemens, S. C., Murray, D. W. & Prell, W. L. Nonstationary phase of the Plio-Pleistocene Asian monsoon. Science 274, 943–948 (1996).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Overpeck, J., Anderson, D., Trumbore, S. & Prell, W. The southwest Indian Monsoon over the last 18 000 years. Clim. Dyn. 12, 213–225 (1996).

    Article  Google Scholar 

  11. 11

    Bryson, R. A. & Swain, A. M. Holocene variations of monsoon rainfall in Rajasthan. Quat. Res. 16, 135–145 (1981).

    Article  Google Scholar 

  12. 12

    Gasse, F., Tehet, R., Durand, A., Gibert, E. & Fontes, J.-C. The arid-humid transition in the Sahara and the Sahel during the last deglaciation. Nature 346, 141–146 (1990).

    ADS  Article  Google Scholar 

  13. 13

    Lamb, H. F. et al. Relation between century-scale Holocene arid intervals in tropical and temperate zones. Nature 373, 134–137 (1995).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Sirocko, F. et al. Century-scale events in monsoonal climate over the last 24,000 years. Nature 364, 322–324 (1993).

    ADS  Article  Google Scholar 

  15. 15

    Liu, K., Yao, Z. & Thompson, L. G. A pollen record of Holocene climatic changes from the Dunde ice cap, Qinghai-Tibetan Plateau. Geology 26, 135–138 (1998).

    ADS  CAS  Article  Google Scholar 

  16. 16

    Ritchie, J. C., Eyles, C. H. & Haynes, C. V. Sediment and pollen evidence for an early to mid-Holocene humid period in the eastern Sahara. Nature 314, 352–355 (1985).

    ADS  Article  Google Scholar 

  17. 17

    Rozanski, K., Araguás-Araguás, L. & Gonfiantini, R. in Climate Change in Continental Isotopic Records (eds Swart, P. K., Lohmann, K. C., McKenzie, J. & Savin, S.) 1–36 (American Geophysical Union Geophysical Monograph 78, Washington DC, 1993).

    Google Scholar 

  18. 18

    COHMAP Members. Climatic changes of the last 18 000 years: observations and model simulations. Science 241, 1043–1052 (1988).

    Article  Google Scholar 

  19. 19

    Hendy, C. H. The isotopic geochemistry of speleothems - I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as paleoclimate indicators. Geochim. Cosmochim. Acta. 35, 801–824 (1971).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Technical Report Series No. 331, 781 (International Atomic Energy Agency, Vienna, 1992).

  21. 21

    Lean, J., Beer, J. & Bradley, R. Reconstruction of solar irradiance since 1610: Implications for climate change. Geophys. Res. Lett. 22, 3195–3198 (1995).

    ADS  Article  Google Scholar 

  22. 22

    Wang, L. et al. East Asian monsoon climate during the Late Pleistocene: high resolution sediment records from the South China Sea. Mar. Geol. 156, 245-284 (1999).

    ADS  Google Scholar 

  23. 23

    Cook, E. R., D'Arrigo, R. D. & Briffa, K. R. A reconstruction of the North Atlantic oscillation using tree-ring chronologies from North America and Europe. Holocene 8, 9–17 (1998).

    ADS  Article  Google Scholar 

  24. 24

    Stocker, T. F. & Wright, D. G. Rapid changes in ocean circulation and atmospheric radiocarbon. Paleoceanography 11, 773–795 (1996).

    ADS  Article  Google Scholar 

  25. 25

    Dickson, R. R. Eurasian snow cover versus Indian monsoon rainfall—An extension of the Hahn-Shukla results. J. Clim. Appl. Meteorol. 23, 171–173 (1984).

    ADS  Article  Google Scholar 

  26. 26

    Meehl, G. A. Influence of the land surface in the Asian summer monsoon, external conditions versus internal feedbacks. J. Clim. 7, 1033–1049 (1994).

    ADS  Article  Google Scholar 

  27. 27

    Haigh, J. D. The impact of solar variability on climate. Science 272, 981–984 (1996).

    ADS  CAS  Article  Google Scholar 

  28. 28

    Ivanovich, M. & Harmon, R. S. Uranium Series Disequilibrium: Applications to Environmental Problems (Clarendon, Oxford, 1993).

    Google Scholar 

  29. 29

    Frank, N., Braun, M., Hambach, U., Mangini, A. & Wagner, G. Warm period growth of travertine during the last interglaciation in southern Germany. Quat. Res. 54, 38–48 (2000).

    CAS  Article  Google Scholar 

  30. 30

    Schulz, M. & Stattegger, K. Spectral analysis of unevenly spaced paleoclimatic time series. Comput. Geosci. 23, 929–945 (1997).

    ADS  Article  Google Scholar 

Download references


We thank D. Sanz for caving assistance; R. Eichstädter for technical assistance; M. Stuiver, A. Baker and D. Ford for suggestions; and S. Clemens for comments.

Author information



Corresponding author

Correspondence to S. J. Burns.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Neff, U., Burns, S., Mangini, A. et al. Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago. Nature 411, 290–293 (2001).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing