Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles


To understand better the link between atmospheric CO2 concentrations and climate over geological time, records of past CO2 are reconstructed from geochemical proxies1,2,3,4. Although these records have provided us with a broad picture of CO2 variation throughout the Phanerozoic eon (the past 544 Myr), inconsistencies and gaps remain that still need to be resolved. Here I present a continuous 300-Myr record of stomatal abundance from fossil leaves of four genera of plants that are closely related to the present-day Ginkgo tree. Using the known relationship between leaf stomatal abundance and growing season CO2 concentrations5,6, I reconstruct past atmospheric CO2 concentrations. For the past 300 Myr, only two intervals of low CO2 (<1,000 p.p.m.v.) are inferred, both of which coincide with known ice ages in Neogene (1–8 Myr) and early Permian (275–290 Myr) times. But for most of the Mesozoic era (65–250 Myr), CO2 levels were high (1,000–2,000 p.p.m.v.), with transient excursions to even higher CO2 (>2,000 p.p.m.v.) concentrations. These results are consistent with some reconstructions of past CO2 (refs 1, 2) and palaeotemperature records7, but suggest that CO2 reconstructions based on carbon isotope proxies3,4 may be compromised by episodic outbursts of isotopically light methane8,9. These results support the role of water vapour, methane and CO2 in greenhouse climate warming over the past 300 Myr.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rarefaction analysis indicates how many cells need to be counted for reliable determination of stomatal index (SI).
Figure 2: Stomatal index has varied considerably over the past 300 million years, but was as high during the early Permian ice age as it has been during the Neogene.
Figure 3
Figure 4: Cuticular estimates (a, b) of atmospheric CO2 (p.p.m.v.) can be compared with other proxies (c) over the past 300 million years.

Similar content being viewed by others


  1. Berner, R. A. The rise of plants and their effect on weathering and atmospheric CO2. Science 276, 543–546 (1997).

    Article  Google Scholar 

  2. Pearson, P. N. & Palmer, M. R. Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406, 695–699 (2000).

    Article  ADS  CAS  Google Scholar 

  3. Ekart, D. P., Cerling, T. E., Montañez, I. P. & Tabor, N. J. A 400 million year carbon isotope record of pedogenic carbonate: implications for paleoatmospheric carbon dioxide. Am. J. Sci. 299, 805–827 (1999).

    Article  ADS  CAS  Google Scholar 

  4. Pagani, M., Freeman, K. H. & Arthur, M. A. Late Miocene atmospheric CO2 concentration and expansion of C4 grasses. Science 285, 876–879 (1999).

    Article  CAS  Google Scholar 

  5. Beerling, D. J., McElwain, J. C. & Osborne, C. P. Stomatal responses of the “living fossil” Ginkgo biloba L. To changes in atmospheric CO2 concentrations. J. Exp. Bot. 49, 1603–1607 (1998).

    CAS  Google Scholar 

  6. Kürschner, W. M., van der Burgh, J., Visscher, H. & Dilcher, D. L. Oak leaves as biosensors of late Neogene and early Pleistocene paleoatmospheric CO2 concentrations. Mar. Micropaleont. 27, 299–312 (1996).

    Article  ADS  Google Scholar 

  7. Veizer, J., Godderis, Y. & François, L. M. Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon. Nature 408, 698–701 (2000).

    Article  ADS  CAS  Google Scholar 

  8. Thomas, E., Zachos, J. C. & Bralower, T. J. in Warm Climates in Earth History (eds Huber, B. T., MacLeod, K. G. & Wing, S. L.) 132–160 (Cambridge Univ. Press, Cambridge, 2000).

    Google Scholar 

  9. Krull, E. S., Retallack, G. J., Campbell, H. J. & Lyon, G. L. δ13Corg chemostratigraphy of the Permian-Triassic boundary in the Maitai Group, New Zealand: evidence for high-latitudinal methane release. NZ J. Geol. Geophys. 43, 21–32 (2000).

    Article  CAS  Google Scholar 

  10. Meyen, S. V. Fundamentals of Palaeobotany (Chapman & Hall, London, 1987).

    Book  Google Scholar 

  11. Retallack, G. J. Postapocalyptic greenhouse revealed by earliest Triassic paleosols in the Sydney Basin, Australia. Geol. Soc. Am. Bull. 111, 52–70 (1999).

    Article  ADS  CAS  Google Scholar 

  12. Anderson, J. M. & Anderson, H. M. Palaeoflora of Southern Africa, Molteno Formation (Triassic) Vol. 2 Gymnosperms (excluding Dicroidium) (Balkema, Rotterdam, 1989).

    Google Scholar 

  13. Gomankov, A. V. & Meyen, S. V. Tatarinovaya flora (soslav i rasprostranenie v pozdnei permi Evrazi) [Tatarian flora (composition and distribution in the late Permian of Eurasia)]. (Trudy Akademia Nauk SSSR 401, 1986).

    Google Scholar 

  14. Florin, R. Untersuchungen zur stammesgeschichte der Coniferales und Cordaitales. K. Svenska Vet. Akad. Handl. 10(1), 1–588 (1931).

    Google Scholar 

  15. Gradstein, F. M. et al. in Geochronology, Time Scales and Global Stratigraphic Correlation (eds Berggren, W. A., Kent, D. V., Aubry, M.-P. & Hardenbol, J.) 95–126 (Spec. Pap. 54, Soc. Econ. Paleont. Mineral., Tulsa, 1995).

    Google Scholar 

  16. Royer, D. L., Berner, R. A. & Hickey, L. J. Estimating latest Cretaceous and early Tertiary atmospheric pCO2 from stomatal indices. Geol. Soc. Am. Abstr. 32(7), A196 (2000).

    Google Scholar 

  17. Lemarchand, D., Gaillardet, J., Lewin, E. & Allègre, C. J. The influence of rivers on marine boron isotopes and implications for reconstructing past ocean pH. Nature 408, 951–954 (2000).

    Article  ADS  CAS  Google Scholar 

  18. Retallack, G. J., Bestland, E. A. & Fremd, T. Eocene and Oligocene paleosols in central Oregon. Geol. Soc. Am. Spec. Pap. 344, 1–192 (2000).

    Google Scholar 

  19. Vakrameev, V. A. Jurassic and Cretaceous Floras and Climates of the Earth 53 (Cambridge Univ. Pres, Cambridge, 1991).

    Google Scholar 

  20. Pálfy, J. et al. Timing the end-Triassic mass extinctions: first on land, then in the sea. Geology 28, 39–42 (2000).

    Article  ADS  Google Scholar 

  21. McElwain, J. C., Beerling, D. J. & Woodward, F. I. Fossil plants and global warming at the Triassic–Jurassic boundary. Science 285, 1386–1390 (1999).

    Article  CAS  Google Scholar 

  22. Jahren, A. H., Arens, N. C., Sarmiento, G., Guerro, J. & Amundson, R. Terrestrial record of methane hydrate dissociation in the Early Cretaceous. Geology 29, 159–162 (2001).

    Article  ADS  CAS  Google Scholar 

  23. Arens, N. C. & Jahren, A. H. Carbon isotope excursion in atmospheric CO2 at the Cretaceous-Tertiary boundary: evidence from terrestrial sediments. Palaios 15, 314–322 (2000).

    Article  ADS  Google Scholar 

  24. Khalil, M. A. K. (ed.) Atmospheric Methane 86 (Springer, Berlin, 2000).

    Book  Google Scholar 

  25. McGowran, B. & Li, Q.-Y. Miocene climatic oscillation recorded in the Lakes Entrance oil shaft, southern Australia. Aust. J. Earth Sci. 43, 129–148 (1997).

    Google Scholar 

  26. Utescher, T., Mossbrugger, U. & Ashraf, A. R. Terrestrial climate evolution in northwest Germany over the last 25 million years. Palaios 15, 430–449 (2000).

    Article  ADS  Google Scholar 

  27. Schwartz, T. Lateritic bauxite in central Germany and implications for Miocene palaeoclimates. Palaeogeogr. Palaeoclimatol. Palaeoeol. 129, 37–50 (1997).

    Article  ADS  Google Scholar 

  28. Cowling, S. A. Plants and temperature: CO2 uncoupling. Science 285, 1500–1501 (1999).

    Article  CAS  Google Scholar 

  29. McElwain, J. C. & Chaloner, W. C. The fossil cuticle as a skeletal record of environmental change. Palaios 11, 376–388 (1996).

    Article  ADS  Google Scholar 

  30. Retallack, G. J. A Colour Guide to Paleosols 117 (Wiley, Chichester, 1997).

    Google Scholar 

Download references


A. Liston provided herbarium specimens of Ginkgo, M. Shaffer helped with SEM imaging, and S. Tanaka supplied Japanese literature. W. Kürschner, D. Dilcher, S. Scheckler and V. Wilde offered useful botanical discussion. M. Manga and J. Wynn helped with curve fitting and diffusion equations.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Gregory J. Retallack.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Retallack, G. A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles. Nature 411, 287–290 (2001).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing