Emperor penguins and climate change


Variations in ocean–atmosphere coupling over time in the Southern Ocean1,2,3 have dominant effects on sea-ice extent and ecosystem structure4,5,6, but the ultimate consequences of such environmental changes for large marine predators cannot be accurately predicted because of the absence of long-term data series on key demographic parameters7,8. Here, we use the longest time series available on demographic parameters of an Antarctic large predator breeding on fast ice9,10 and relying on food resources from the Southern Ocean11. We show that over the past 50 years, the population of emperor penguins (Aptenodytes forsteri) in Terre Adélie has declined by 50% because of a decrease in adult survival during the late 1970s. At this time there was a prolonged abnormally warm period with reduced sea-ice extent. Mortality rates increased when warm sea-surface temperatures occurred in the foraging area and when annual sea-ice extent was reduced, and were higher for males than for females. In contrast with survival, emperor penguins hatched fewer eggs when winter sea-ice was extended. These results indicate strong and contrasting effects of large-scale oceanographic processes and sea-ice extent on the demography of emperor penguins, and their potential high susceptibility to climate change.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Climate and population changes.
Figure 2: Adult survival of emperor penguins.


  1. 1

    Kukla, G. & Gavin, J. Summer ice and carbon dioxide. Science 214, 497–503 (1981).

    ADS  CAS  Article  Google Scholar 

  2. 2

    White, W. B. & Peterson, R. G. An Antarctic circumpolar wave in surface pressure, wind, temperature and sea-ice extent. Nature 380, 699–702 (1996).

    ADS  CAS  Article  Google Scholar 

  3. 3

    de la Mare, W. K. Abrupt mid-twentieth century decline in Antarctic sea-ice extent from whaling records. Nature 389, 57–60 (1997).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Tynan, C. T. Ecological importance of the Southern Boundary of the Antarctic Circumpolar current. Nature 392, 708–716 (1998).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Nicol, S. et al. Ocean circulation off east Antarctica affects ecosystem structure and sea-ice extent. Nature 406, 504–507 (2000).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Aebischer, N. J., Coulson, J. C. & Colebrook, J. M. Parallel long-term trends across four marine trophic levels and weather. Nature 347, 753–755 (1990).

    ADS  Article  Google Scholar 

  7. 7

    Croxall, J. P. Southern Ocean environmental changes: effects on seabird, seal and whale populations. Phil. Trans. R. Soc. Lond. B 338, 319–328 (1992).

    ADS  Article  Google Scholar 

  8. 8

    Furness, R. W. & Greenwood, J. J. D. (eds) Birds as Monitors of Environmental Change (Chapman and Hall, London, 1993).

    Google Scholar 

  9. 9

    Prévost, J. Ecologie du Manchot Empereur Aptenodytes forsteri Grey (Expéditions Polaires Françaises, Hermann, Paris, 1961).

    Google Scholar 

  10. 10

    LeMaho, Y. The Emperor penguin: a strategy to live and breed in the cold. Am. Sci. 65, 680–693 (1977).

    ADS  Google Scholar 

  11. 11

    Kirkwood, R. & Robertson, G. The foraging ecology of female Emperor Penguins in winter. Ecol. Monogr. 67, 155–176 (1997).

    Article  Google Scholar 

  12. 12

    Lebreton, J. D. & Clobert, J. in Bird Population Studies (eds Perrins, C. M., Lebreton, J. D. & Hirons, G. J. M.) 103–125 (Oxford Univ. Press, Oxford, 1991).

    Google Scholar 

  13. 13

    Williams, T. D. The Penguins (Oxford Univ. Press, Oxford, 1995).

    Google Scholar 

  14. 14

    Offredo, C. & Ridoux, V. The diet of Emperor penguins Aptenodytes forsteri in Adélie land, Antarctica. Ibis 128, 409–413 (1986).

    Article  Google Scholar 

  15. 15

    Cherel, Y. & Kooyman, G. L. Food of emperor penguins (Aptenodytes forsteri) in the western Ross Sea, Antarctica. Mar. Biol. 130, 335–344 (1998).

    Article  Google Scholar 

  16. 16

    Pakhomov, E. A. & McQuaid, C. D. Distribution of surface zooplankton and seabirds across the Southern Ocean. Polar Biol. 16, 271–286 (1996).

    Article  Google Scholar 

  17. 17

    Loeb, V. et al. Effects of sea-ice extent and krill or salp dominance on the Antarctic food web. Nature 387, 897–900 (1997).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Isenmann, P. Contribution à l'éthologie et à l'écologie du Manchot empereur (Aptenodytes forsteri Gray) à la colonie de Pointe Géologie (Terre Adélie). Oiseau R.F.O. 41, 9–61 (1971).

    Google Scholar 

  19. 19

    Ancel, A. et al. Foraging behaviour of emperor penguins as a resource detector in winter and summer. Nature 360, 336–338 (1992).

    ADS  Article  Google Scholar 

  20. 20

    Kooyman, G., Hunke, E., Ackley, S., van Dam, R. & Robertson, G. Moult of the emperor penguin: travel, location, and habitat selection. Mar. Ecol. Prog. Ser. 204, 269–277 (2000).

    ADS  Article  Google Scholar 

  21. 21

    Jouventin, P. in The Biology of Penguins (ed. Stonehouse, B.) 435–446 (Macmillan, London, 1974).

    Google Scholar 

  22. 22

    Reynolds, R. W. & Marisco, D. C. An improved real time global sea surface temperature analysis. J. Climate 6, 114–119 (1993).

    ADS  Article  Google Scholar 

  23. 23

    Parkinson, C. L. Spatial patterns in the length of the sea ice season in the Southern Ocean, 1979-1986. J. Geophys. Res. 99, 16327–16339 (1994).

    ADS  Article  Google Scholar 

  24. 24

    ECMWF/WCRP. A Global Atmospheric Data Archive (Tech. Attach. European Centre for Medium Range Weather Forecasts, Reading, 1993).

    Google Scholar 

  25. 25

    Weimerskirch, H., Stahl, J. C. & Jouventin, P. The breeding biology and population dynamics of king penguins Aptenodytes patagonicus at the Crozet islands. Ibis 134, 107–117 (1992).

    Article  Google Scholar 

  26. 26

    Nichols, J. D. Capture–recapture models: using marked animals to study population dynamics. Bioscience 42, 94–102 (1991).

    Article  Google Scholar 

  27. 27

    Lebreton, J. D., Burnham, K. P., Clobert, J. & Anderson, D. R. Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecol. Monogr. 62, 67–118 (1992).

    Article  Google Scholar 

  28. 28

    White, G. C. & Burnham, K. P. Program MARK: survival estimation from populations of marked animals. Bird Study 46, 120–138 (1999).

    Article  Google Scholar 

  29. 29

    Siriwardena, G. M., Baillie, S. R. & Wilson, J. D. Temporal variation in the annual survival rates of six granivorous birds with contrasting population trends. Ibis 141, 621–636 (1999).

    Article  Google Scholar 

Download references


This study was supported over the past 50 years by Expéditions Polaires Françaises, Terres Australes et Antarctiques Françaises and by Institut Français pour la Recherche et la Technologie Française. We thank all the people involved in Terre Adélie in the monitoring programs of the Emperor penguin population, and Y. Cherel, G. Kooyman and C. Parkinson for comments on the manuscript. We thank Météo France DOM-TOM, G. Testa and M. Gaillot for the meteorological data of the station of Dumont D'Urville, Terre Adélie.

Author information



Corresponding author

Correspondence to Christophe Barbraud.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Barbraud, C., Weimerskirch, H. Emperor penguins and climate change. Nature 411, 183–186 (2001). https://doi.org/10.1038/35075554

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.