Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Larval dispersal potential of the tubeworm Riftia pachyptila at deep-sea hydrothermal vents


Hydrothermal vents are ephemeral because of frequent volcanic and tectonic activities associated with crust formation1,2,3. Although the larvae of hydrothermal vent fauna can rapidly colonize new vent sites separated by tens to hundreds of kilometres4,5, the mechanisms by which these larvae disperse and recruit are not understood. Here we integrate physiological, developmental and hydrodynamic data to estimate the dispersal potential of larvae of the giant tubeworm Riftia pachyptila. At in situ temperatures and pressures (2 °C and 250 atm), we estimate that the metabolic lifespan for a larva of R. pachyptila averages 38 days. In the measured flow regime at a fast-spreading ridge axis (9° 50′ N; East Pacific Rise), this lifespan results in potential along-ridge dispersal distances that rarely exceed 100 km. This limited dispersal results not from the physiological performance of the embryos and larvae, but instead from transport limitations imposed by periodic reversals in along-ridge flows and sustained episodes of across-ridge flow. The lifespan presented for these larvae can now be used to predict dispersal under current regimes at other hydrothermal vent sites.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Early development to a larval stage in Riftia pachyptila cultured in pressure vessels at 2 °C and 250 atm.
Figure 2: The developmental and respiration rates of Riftia pachyptila embryos.
Figure 3: Biochemical composition and buoyancy of the eggs of Riftia pachyptila.
Figure 4: Dispersal potential of larvae of Riftia pachyptila modelled from current regimes at 9° N East Pacific Rise.


  1. 1

    Fornari, D. J. et al. Time-series temperature measurements at high-temperature hydrothermal vents, East Pacific Rise 9° 49–51′ N: monitoring a crustal cracking event. Earth Planet. Sci. Lett. 160, 419–431 (1998).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Fornari, D. J. & Embley, R. W. in Physical, Chemical, Biological and Geological Interactions within Seafloor Hydrothermal Systems (eds Humphris, S. E., Zierenberg, R. A., Mullineaux, L. S. & Thomson, R. E.) 1–46 (American Geophysical Union Monograph, Washington DC, 1995).

    Google Scholar 

  3. 3

    Haymon, R. M. et al. Volcanic eruption of the mid-ocean ridge along the East Pacific Rise crest at 9° 45–52′ N: direct submersible observations of sea-floor phenomena associated with an eruption event in April, 1991. Earth Planet. Sci. Lett. 119, 85–101 (1993).

    ADS  Article  Google Scholar 

  4. 4

    Mullineaux, L. S., Fisher, C. R., Peterson, C. H. & Schaeffer, S. W. Tubeworm succession at hydrothermal vents: use of biogenic cues to reduce habitat selection error? Oecologia 123, 275–284 (2000).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Lutz, R. A. et al. Rapid growth at deep-sea vents. Nature 371, 663–664 (1994).

    ADS  Article  Google Scholar 

  6. 6

    Tyler, P. A. & Young, C. M. Reproduction and dispersal at vents and cold seeps. J. Mar. Biol. 79, 193–208 (1999).

    Article  Google Scholar 

  7. 7

    Young, C. M., Vazquez, E., Metaxas, A. & Tyler, P. A. Embryology of vestimentiferan tube worms from deep-sea methane/sulphide seeps. Nature 381, 514–516 (1996).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Shilling, F. M. & Manahan, D. T. Energy metabolism and amino acid transport during early development of Antarctic and temperate echinoderms. Biol. Bull. 187, 398–407 (1994).

    CAS  Article  Google Scholar 

  9. 9

    Marsh, A. G., Leong, P. K. K. & Manahan, D. T. Energy metabolism during embryonic development and larval growth of an Antarctic sea urchin. J. Exp. Biol. 202, 2041–2050 (1999).

    CAS  PubMed  Google Scholar 

  10. 10

    Marsh, A. G. & Manahan, D. T. A method for accurate measurements of the respiration rates of marine invertebrate embryos and larvae. Mar. Ecol. Prog. Ser. 184, 1–10 (1999).

    ADS  Article  Google Scholar 

  11. 11

    Evanson, M., Bornhold, E. A., Goldblatt, R. H., Harrison, P. J. & Lewis, A. G. Temporal variation in body composition and lipid storage of the overwintering, subarctic copepod Neocalanus plumchrus in the Strait of Georgia, British Columbia (Canada). Mar. Ecol. Prog. Ser. 192, 239–247 (2000).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Hagen, W. & Kattner, G. Lipid metabolism of the Antarctic euphausiid Thysanoessa macrura and its ecological implications. Limnol. Oceanogr. 43, 1894–1901 (1998).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Kattner, G. & Hagen, W. Lipid metabolism of the Antarctic euphausiid Euphausia crystallorophias and its ecological implications. Mar. Ecol. Prog. Ser. 170, 203–213 (1998).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Cary, S. C., Felbeck, H. & Holland, N. D. Observations on the reproductive biology of the hydrothermal vent tube worm Riftia pachyptila. Mar. Ecol. Prog. Ser. 52, 89–94 (1989).

    ADS  Article  Google Scholar 

  15. 15

    Baker, E. T. et al. Hydrothermal plumes along the East Pacific Rise, 8° 40′ to 11° 50′ N: 1. Plume distribution and relationship to the apparent magmatic budget. Earth Planet. Sci. Lett. 128, 1–17 (1994).

    ADS  CAS  Article  Google Scholar 

  16. 16

    Lupton, J. E. et al. Tracking the evolution of a hydrothermal event plume with a RAFOS neutrally buoyant drifter. Science 280, 1052–1055 (1998).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Kim, S. L., Mullineaux, L. S. & Helfrich, K. Larval dispersal via entrainment into hydrothermal vent plumes. J. Geophys. Res. 99, 12655–12665 (1994).

    ADS  Article  Google Scholar 

  18. 18

    Mullineaux, L. S., Wiebe, P. H. & Baker, E. T. Larvae of benthic invertebrates in hydrothermal vent plumes over Juan de Fuca Ridge. Mar. Biol. 122, 585–596 (1995).

    Article  Google Scholar 

  19. 19

    Thomson, R. E., Roth, S. E. & Dymond, J. Near-inertial motions over a mid-ocean ridge: effects of topography and hydrothermal plumes. J. Geophys. Res. 95, 12961–12966 (1990).

    ADS  Article  Google Scholar 

  20. 20

    Cannon, G. A. & Pashinski, D. J. Variations in mean currents affecting hydrothermal plumes on the Juan de Fuca Ridge. J. Geophys. Res. 102, 24965–24976 (1997).

    ADS  Article  Google Scholar 

  21. 21

    Crane, K., Aikman III, F. & Foucher, J.-P. The distribution of geothermal fields along the East Pacific Rise from 13° 10′ N to 8° 20′ N: implications for deep seated origins. Mar. Geophys. Res. 9, 211–236 (1988).

    Article  Google Scholar 

  22. 22

    Chevaldonné, P., Jollivet, D., Vangriesheim, A. & Desbruyères, D. Hydrothermal-vent alvinellid polychaete dispersal in the eastern Pacific . 1. Influence of vent site distribution, bottom currents, and biological patterns. Limnol. Oceanogr. 42, 67–80 (1997).

    ADS  Article  Google Scholar 

  23. 23

    Jannasch, H. W., Wirsen, C. O. & Doherty, K. W. A pressurized chemostat for the study of marine barophilic and oligotrophic bacteria. Appl. Environ. Microbiol. 62, 1593–1596 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Miller, C. B., Morgan, C. A., Prahl, F. G. & Sparrow, M. A. Storage lipids of the copepod Calanus finmarchicus from Georges Bank and the Gulf of Maine. Limnol. Oceanogr. 43, 488–497 (1998).

    ADS  CAS  Article  Google Scholar 

  25. 25

    Thomson, R. E., Gordon, R. L. & Dymond, J. Acoustic doppler current profiler observations of a mid-ocean ridge hydrothermal plume. J. Geophys. Res. 94, 4709–4720 (1989).

    ADS  Article  Google Scholar 

  26. 26

    Cannon, G. A., Pashinski, D. J. & Lemon, M. R. Mid-depth flow near hydrothermal venting sites on the southern Juan de Fuca ridge. J. Geophys. Res. 96, 12815–12831 (1991).

    ADS  Article  Google Scholar 

Download references


We thank the captain and crew of the RV Atlantis II, and the support crew of the DSV Alvin. We acknowledge the data collection and assistance of S. Brooke, A. Green, S. Mills, M. Moore and D. Pace. C. Allen, S. Beaulieu, T. Griffin, H. Hunt, A. Metaxas, P. Tyler and J. Welch provided assistance at sea; M. Grosenbaugh provided programming and conceptual assistance with the dispersal model. This work was supported by grants from the National Science Foundation.

Author information



Corresponding author

Correspondence to Donal T. Manahan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Marsh, A., Mullineaux, L., Young, C. et al. Larval dispersal potential of the tubeworm Riftia pachyptila at deep-sea hydrothermal vents. Nature 411, 77–80 (2001).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing