Abstract
The distribution of entangled states between distant locations will be essential for the future large-scale realization of quantum communication schemes such as quantum cryptography1,2 and quantum teleportation3. Because of unavoidable noise in the quantum communication channel, the entanglement between two particles is more and more degraded the further they propagate. Entanglement purification4,5,6,7 is thus essential to distil highly entangled states from less entangled ones. Existing general purification protocols4,5,6 are based on the quantum controlled-NOT (CNOT) or similar quantum logic operations, which are very difficult to implement experimentally. Present realizations of CNOT gates are much too imperfect to be useful for long-distance quantum communication8. Here we present a scheme for the entanglement purification of general mixed entangled states, which achieves 50 per cent of the success probability of schemes based on the CNOT operation, but requires only simple linear optical elements. Because the perfection of such elements is very high, the local operations necessary for purification can be performed with the required precision. Our procedure is within the reach of current technology, and should significantly simplify the implementation of long-distance quantum communication.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Towards entanglement distillation between atomic ensembles using high-fidelity spin operations
Communications Physics Open Access 22 March 2022
-
All-optical modulation of quantum states by nonlinear metasurface
Light: Science & Applications Open Access 11 March 2022
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Bennett, C. H. & Brassard, G. in Proc. IEEE Int. Conf. on Computers, Systems and Signal Processing 175–179 (IEEE, New York, 1984).
Ekert, A. Quantum cryptography based on Bell's theorem. Phys. Rev. Lett. 67, 661–663 (1991).
Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1898 (1993).
Bennett, C. H. et al. Purification of noisy entanglement, and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996).
Deutsch, D. et al. Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77, 2818–2821 (1996).
Duan, L. M., Giedke, G., Cirac, J. L. & Zoller, P. Entanglement purification of gaussian continuous variable quantum states. Phys. Rev. Lett. 84, 4002–4005 (2000).
Bose, S., Vedral, V. & Knight, P. L. Purification via entanglement swapping and conserved entanglement. Phys. Rev. A 60, 194–197 (1999).
Briegel, H.-J., Duer, W., Cirac, J. I. & Zoller, P. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).
Bennett, C. H. & DiVincenzo, D. P. Quantum information and computation. Nature 404, 247–255 (2000).
Bennett, C. H. & Wiesner, S. J. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992).
Mattle, K., Weinfurter, H., Kwiat, P. G. & Zeilinger, A. Dense coding in experimental quantum communication. Phys. Rev. Lett. 76, 4656–4659 (1996).
Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).
Pan, J.-W., Bouwmeester, D., Weinfurter, H. & Zeilinger, A. Experimental entanglement swapping: Entangling photons that never interacted. Phys. Rev. Lett. 80, 3891–3894 (1998).
Bouwmeester, D., Pan, J.-W., Weinfurter, H. & Zeilinger, A. High-fidelity teleportation of independent qubits. J. Mod. Opt. 47, 279–289 (2000).
Jennewein, T., Simon, C., Weihs, G., Weinfurter, H. & Zeilinger, A. Quantum cryptography with entangled photons. Phys. Rev. Lett. 84, 4729–4732 (2000).
Naik, D. S., Peterson, C. G., White, A. G., Berglund, A. J. & Kwiat, P. G. Entangled state quantum cryptography: eavesdropping on the Ekert protocol. Phys. Rev. Lett. 84, 4733–4736 (2000).
Tittel, W., Brendel, T., Zbinden, H. & Gisin, N. Quantum cryptography using entangled photons in energy-time Bell states. Phys. Rev. Lett. 84, 4737–4740 (2000).
Wootters, W. K. & Zurek, W. H. A single quantum cannot be cloned. Nature 299, 802–803 (1982).
Monroe, C., Meekhof, D. M., King, B. E., Itano, W. M. & Wineland, D. J. Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75, 4714–4717 (1995).
Rauschenbeutel, A. et al. Coherent operation of a tunable quantum phase gate in cavity QED. Phys. Rev. Lett. 83, 5166–5169 (1999).
Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).
Bouwmeester, D., Pan, J.-W., Daniell, M., Weinfurter, H. & Zeilinger, A. Observation of three-photon Greenberger-Horne-Zeilinger entanglement. Phys. Rev. Lett. 82, 1345–1349 (1999).
Pan, J.-W., Bouwmeester, D., Daniell, M., Weinfurter, H. & Zeilinger, A. Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement. Nature 403, 515–519 (2000).
Takeuchi, S., Yamamoto, Y. & Hogue, H. H. Development of a high-quantum-efficiency single-photon counting system. Appl. Phys. Lett. 74, 1064–1065 (1999).
Sanaka, K., Kawahara, K. & Kuga, T. New high-efficiency source of photon pairs for engineering quantum entanglement. Preprint quant-ph/0012028 at 〈http://xxx.lanl.gov/ (2000).
Tanzilli, S. et al. Highly efficient photon-pair source using a periodically poled lithium niobate waveguide. Preprint quant-ph/0012053 at 〈http://xxx.lanl.gov/ (2000).
Pan, J.-W. & Zeilinger, A. Greenberger-Horne-Zeilinger-state analyzer. Phys. Rev. A 57, 2208–2211 (1998).
Bouwmeester, D. Bit-flip-error rejection in optical quantum communication. Phys. Rev. A 63, R040301 (2001).
Yamamoto, T., Koashi, M. & Imoto, N. A concentration scheme for two partially entangled photon pairs. Preprint quant-ph/0101042 at 〈http://xxx.lanl.gov/ (2001).
Cerf, N. J., Adami, C. & Kwiat, P. G. Optical simulation of quantum logic. Phys. Rev. A 57, R1477–1480 (1998).
Acknowledgements
We thank L.-M. Duan, H. Ritsch, T. Tyc, L. Vaidman, P. Zoller and M. Zukowski for discussions. This work was supported by the Austrian Science Foundation FWF, the Austrian academy of sciences, and the TMR and QIPC programmes of the European Union.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Pan, JW., Simon, C., Brukner, Č. et al. Entanglement purification for quantum communication. Nature 410, 1067–1070 (2001). https://doi.org/10.1038/35074041
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/35074041
This article is cited by
-
A photonic entanglement filter with Rydberg atoms
Nature Photonics (2023)
-
Advances in quantum entanglement purification
Science China Physics, Mechanics & Astronomy (2023)
-
Towards entanglement distillation between atomic ensembles using high-fidelity spin operations
Communications Physics (2022)
-
All-optical modulation of quantum states by nonlinear metasurface
Light: Science & Applications (2022)
-
One-step device-independent quantum secure direct communication
Science China Physics, Mechanics & Astronomy (2022)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.