Abstract
No biological system has been studied by more diverse approaches than the actin-based molecular motor myosin. Biophysics, biochemistry, physiology, classical genetics and molecular genetics have all made their contributions, and myosin is now becoming one of the best-understood enzymes in biology.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
ProFiT: eine MS-basierte Methode zur Skelettmuskelfasertypisierung
BIOspektrum Open Access 24 November 2021
-
High-throughput proteomics fiber typing (ProFiT) for comprehensive characterization of single skeletal muscle fibers
Skeletal Muscle Open Access 23 March 2020
-
Direct visualization of human myosin II force generation using DNA origami-based thick filaments
Communications Biology Open Access 27 November 2019
Access options
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout






References
Huxley, H. E. The mechanism of muscular contraction. Science 164, 1356–1365 (1969).
Huxley, A. F. & Simmons, R. M. Proposed mechanism of force generation in striated muscle. Nature 233, 533–538 (1971).
Moore, P. B., Huxley, H. E. & de Rosier, D. J. Three-dimensional reconstruction of F-actin, thin filaments and decorated thin filaments. J. Mol. Biol. 50, 279–295 (1970).
Lymn, R. W. & Taylor, E. W. Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry 10, 4617–4624 (1971).
Yount, R. G., Ojala, D. & Babcock, D. Interaction of P–N–P and P–C–P analogs of adenosine triphosphate with heavy meromyosin, myosin, and actomyosin. Biochemistry 10, 2490–2496 (1971).
Goody, R. S. & Eckstein, F. Thiophosphate analogs of nucleoside di- and triphosphates. J. Am. Chem. Soc. 93, 6252–6257 (1971).
Goody, R. S. & Hofmann, W. Stereochemical aspects of the interaction of myosin and actomyosin with nucleotides. J. Muscle Res. Cell Motil. 1, 101–115 (1980).
Pollard, T. D. & Korn, E. D. Acanthamoeba myosin. I. Isolation from Acanthamoeba castellanii of an enzyme similar to muscle myosin. J. Biol. Chem. 248, 4682–4690 (1973).
Huxley, H. E. et al. Time-resolved X-ray diffraction studies of the myosin layer-line reflections during muscle contraction. J. Mol. Biol. 158, 637–84 (1982).
Sheetz, M. P. & Spudich, J. A. Movement of myosin-coated fluorescent beads on actin cables in vitro. Nature 303, 31–35 (1983).
Vale, R. D., Reese, T. S. & Sheetz, M. P. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42, 39–50 (1985).
Kron, S. J. & Spudich, J. A. Fluorescent actin filaments move on myosin fixed to a glass surface. Proc. Natl Acad. Sci. USA 83, 6272–6276 (1986).
Rice, S. et al. A structural change in the kinesin motor protein that drives motility. Nature 402, 778–784 (1999).
Vale, R. D. & Milligan, R. A. The way things move: looking under the hood of molecular motor proteins. Science 288, 88–95 (2000).
Goldstein, L. S. & Philp, A. V. The road less traveled: emerging principles of kinesin motor utilization. Annu. Rev. Cell. Dev. Biol. 15, 141–83 (1999).
Toyoshima, Y. Y. et al. Myosin subfragment-1 is sufficient to move actin filaments in vitro. Nature 328, 536–539 (1987).
Kabsch, W. et al. Atomic structure of the actin:DNase I complex. Nature 347, 37–44 (1990).
Rayment, I. et al. Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261, 50–58 (1993).
Dominguez, R. et al. Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Cell 94, 559–571 (1998).
Houdusse, A., Szent-Gyorgyi, A. G. & Cohen, C. Three conformational states of scallop myosin S1. Proc. Natl Acad. Sci. USA 97, 11238–11243 (2000).
Smith, C. A. & Rayment, I. X-ray structure of the magnesium (II) ADP. vanadate complex of the Dictyostelium discoideum myosin motor domain to 1.9 Å resolution. Biochemistry 35, 5404–5417 (1996).
Rayment, I. et al. Structure of the actin-myosin complex and its implications for muscle contraction. Science 261, 58–65 (1993).
Schröder, R. R. et al. Three-dimensional atomic model of F-actin decorated with Dictyostelium myosin S1. Nature 364, 171–174 (1993).
Jontes, J. D., Wilson-Kubalek, E. M. & Milligan, R. A. A 32 degree tail swing in brush border myosin I on ADP release. Nature 378, 751–753 (1995).
Whittaker, M. et al. A 35-Å movement of smooth muscle myosin on ADP release. Nature 387, 748–751 (1995).
Cooke, R., Crowder, M. S. & Thomas, D. D. Orientation of spin labels attached to cross-bridges in contracting muscle fibres. Nature 300, 776–778 (1982).
Cooke, R. The mechanism of muscle contraction. CRC Crit. Rev. Biochem. 21, 53–118 (1986).
Shih, W. M. et al. A FRET-based sensor reveals large ATP hydrolysis-induced conformational changes and three distinct states of the molecular motor myosin. Cell 102, 683–694 (2000).
Yanagida, T., Arata, T. & Oosawa, F. Sliding distance of actin filament induced by a myosin crossbridge during one ATP hydrolysis cycle. Nature 316, 366–369 (1985).
Harada, Y. et al. Mechanochemical coupling in actomyosin energy transduction studied by in vitro movement assay. J. Mol. Biol. 216, 49–68 (1990).
Finer, J. T., Simmons, R. M. & Spudich, J. A. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368, 113–119 (1994).
Yanagida, T. & Iwane, A. H. A large step for myosin. Proc. Natl Acad. Sci. USA 97, 9357–9359 (2000).
Ruppel, K. M. & Spudich, J. A. Structure–function analysis of the motor domain of myosin. Annu. Rev. Cell Dev. Biol. 12, 543–73 (1996).
Mercer, J. A. et al. Novel myosin heavy chain encoded by murine dilute coat colour locus. Nature 349, 709–713 (1991).
Cheney, R. E. et al. Brain myosin-V is a two-headed unconventional myosin with motor activity. Cell 75, 13–23 (1993).
Mehta, A. D. et al. Myosin-V is a processive actin-based motor. Nature 400, 590–593 (1999).
Rief, M. et al. Myosin-V stepping kinetics: a molecular model for processivity. Proc. Natl Acad. Sci. USA 97, 9482–9486 (2000).
Sakamoto, T. et al. Direct observation of processive movement by individual myosin V molecules. Biochem. Biophys. Res. Commun. 272, 586–590 (2000).
Walker, M. L. et al. Two-headed binding of a processive myosin to F-actin. Nature 405, 804–807 (2000).
De La Cruz, E. M. et al. The kinetic mechanism of myosin V. Proc. Natl Acad. Sci. USA 96, 13726–13731 (1999).
De La Cruz, E. M., Sweeney, H. L. & Ostap, E. M. ADP inhibition of Myosin V ATPase Activity. Biophys. J. 79, 1524–1429 (2000).
Trybus, K. M., Krementsova, E. & Freyzon, Y. Kinetic characterization of a monomeric unconventional myosin V construct. J. Biol. Chem. 274, 27448–27456 (1999).
Wang, F. et al. Effect of ADP and ionic strength on the kinetic and motile properties of recombinant mouse myosin V. J. Biol. Chem. 275, 4329–4335 (2000).
Holmes, K. C. et al. Atomic model of the actin filament. Nature 347, 44–49 (1990).
Lorenz, M., Popp, D. & Holmes, K. C. Refinement of the F-actin model against X-ray fiber diffraction data by the use of a directed mutation algorithm. J. Mol. Biol. 234, 826–836 (1993).
Funatsu, T. et al. Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 374, 555–559 (1995).
Visscher, K., Schnitzer, M. J. & Block, S. M. Single kinesin molecules studied with a molecular force clamp. Nature 400, 184–189 (1999).
Author information
Authors and Affiliations
Related links
Related links
DATABASE LINKS
ENCYCLOPEDIA OF LIFE SCIENCES
Rights and permissions
About this article
Cite this article
Spudich, J. The myosin swinging cross-bridge model. Nat Rev Mol Cell Biol 2, 387–392 (2001). https://doi.org/10.1038/35073086
Issue Date:
DOI: https://doi.org/10.1038/35073086
This article is cited by
-
Myosin II Adjusts Motility Properties and Regulates Force Production Based on Motor Environment
Cellular and Molecular Bioengineering (2022)
-
ProFiT: eine MS-basierte Methode zur Skelettmuskelfasertypisierung
BIOspektrum (2021)
-
High-throughput proteomics fiber typing (ProFiT) for comprehensive characterization of single skeletal muscle fibers
Skeletal Muscle (2020)
-
Direct visualization of human myosin II force generation using DNA origami-based thick filaments
Communications Biology (2019)
-
Mechanical regulation of gene expression in cardiac myocytes and fibroblasts
Nature Reviews Cardiology (2019)