Key Points
-
The cloning of green fluorescent protein (GFP), engineering of chimeric fusion proteins, and advances in fluorescence imaging methods have made it possible for researchers to follow the dynamics and interactions of proteins in living cells. In this review, we describe the application of biophysical microscopy-based techniques in combination with GFP-chimaeras to characterize protein dynamics in living cells.
-
The photobleaching technique FRAP (fluorescence recovery after photobleaching)) has been used since the mid-1970s to determine the diffusion constant of fluorescent antibody-labelled proteins on the plasma membrane of cells. Photobleaching of GFP-chimeric proteins localized throughout the cell has been recently exploited to determine the viscosities of different cellular environments and to reveal the diffusional mobilities of various proteins.
-
Variations of FRAP, including selective photobleaching and FLIP (fluorescence loss in photobleaching), can reveal the continuities and discontinuities of intracellular organelles and compartments. In addition, FLIP has been used to characterize the kinetics of protein binding and release in living cells.
-
FRET (fluorescence resonance energy transfer) is a property of certain pairs of fluorophores, in which a high energy fluorophore can excite a lower energy fluorophore when the two fluorophores are in extremely close proximity. FRET microscopy has been used to determine whether proteins that co-localize are physically interacting in fixed and living cells. We describe several recent applications and variations of FRET in the review.
-
The technique of FCS (fluorescence correlation spectroscopy) has recently become accessible to cell biologists with commercially available microscopes. FCS can be used to measure diffusion constants for multiple populations and ratios of bound and free proteins, allowing for sensitive measurements of protein–protein interactions in cells.
-
Ongoing development of GFP variants, unusual properties of GFP, alternatives to GFP in living cells, and new microscopy techniques hold much promise for future studies of protein dynamics in living cells.
Abstract
Since the advent of the green fluorescent protein, the subcellular localization, mobility, transport routes and binding interactions of proteins can be studied in living cells. Live cell imaging, in combination with photobleaching, energy transfer or fluorescence correlation spectroscopy are providing unprecedented insights into the movement of proteins and their interactions with cellular components. Remarkably, these powerful techniques are accessible to non-specialists using commercially available microscope systems.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Viewing life without labels under optical microscopes
Communications Biology Open Access 25 May 2023
-
Machine-learning-powered extraction of molecular diffusivity from single-molecule images for super-resolution mapping
Communications Biology Open Access 28 March 2023
-
A noninvasive fluorescence imaging-based platform measures 3D anisotropic extracellular diffusion
Nature Communications Open Access 26 March 2021
Access options
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout






References
Matz, M. V. et al. Fluorescent proteins from nonbioluminescent Anthozoa species. Nature Biotechnol. 17, 969–973 (1999); erratum 17, 1227 (1999).
Tsien, R. Y. The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544 (1998).
Heim, R., Prasher, D. C. & Tsien, R. Y. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc. Natl Acad. Sci. USA 91, 12501–12504 (1994).
Swaminathan, R., Hoang, C. P. & Verkman, A. S. Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion. Biophys. J. 72, 1900–1907 (1997).Characterizes the photobleaching properties of GFP in solution and in vivo in the cytoplasm.
Lippincott–Schwartz, J. et al. in Green Fluorescent Proteins (eds Sullivan, K. & Kay, S.) 261–291 (Academic, San Diego, 1999).
Yang, F., Moss, L. G. & Phillips, G. N. J. The molecular structure of green fluorescent protein. Nature Biotechnol. 14, 1246–1251 (1996).
Prendergast, F. G. Biophysics of the green fluorescent protein. Methods Cell Biol. 58, 1–18 (1999).
Axelrod, D., Koppel, D. E., Schlessinger, J., Elson, E. & Webb, W. W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J. 16, 1055–1069 (1976).
White, J. & Stelzer, E. Photobleaching GFP reveals protein dynamics inside living cells. Trends Cell Biol. 9, 61–65 (1999).
Saxton, M. J. & Jacobsen, K. Single-particle tracking: applications to membrane dynamics. Annu. Rev. Biophys. Biomol. Struct. 26, 373–399 (1997).
Edidin, M. in Mobility and Proximity in Biological Membranes (eds Edidin, M., Szollosi, J. & Tron, L.) 109–135 (CRC Press, Boca Raton, Florida, 1994).
Feder, T. J., Brust-Mascher, I., Slattery, J. P., Baird, B. & Webb, W. W. Constrained diffusion or immobile fraction on cell surfaces: a new interpretation. Biophys. J. 70, 2767–2773 (1996).
Ellenberg, J. et al. Nuclear membrane dynamics and reassembly in living cells: targeting of an inner nuclear membrane protein in interphase and mitosis. J. Cell Biol. 138, 1193–1206 (1997).Shows the connectivity of the endoplasmic reticulum (ER) and nuclear envelope in vivo and provides a visual example of how a protein can be mobile in one domain of the cell and immobile in another domain.
Edidin, M. in The Structure of Biological Membranes (ed. Yeagle, P.) 539–572 (CRC, Boca Raton, 1992).
Cole, N. B. et al. Diffusional mobility of Golgi proteins in membranes of living cells. Science 273, 797–801 (1996).First paper to use FRAP to measure the diffusion rate of a GFP chimaera in a cellular organelle, the Golgi. In addition, this paper introduces the FLIP method of photobleaching.
Sciaky, N. et al. Golgi tubule traffic and the effects of brefeldin A visualized in living cells. J. Cell Biol. 139, 1137–1155 (1997).
Partikian, A., Olveczky, B., Swaminathan, R., Li, Y. & Verkman, A. S. Rapid diffusion of green fluorescent protein in the mitochondrial matrix. J. Cell Biol. 140, 821–829 (1998).
Olveczky, B. P. & Verkman, A. S. Monte Carlo analysis of obstructed diffusion in three dimensions: application to molecular diffusion in organelles. Biophys. J. 74, 2722–2730 (1998).
Siggia, E. D., Lippincott-Schwartz, J. & Bekiranov, S. Diffusion in an inhomogeneous media: theory and simulations applied to a whole cell photobleach recovery. Biophys. J. 79, 1761–1770 (2000).Describes a simulation program that can be used to calculate diffusion rates from FRAP data obtained by a confocal microscope.
Dayel, M. J., Hom, E. F. Y. & Verkman, A. S. Diffusion of green fluorescent protein in the aqueous-phase lumen of endoplasmic reticulum. Biophys. J. 76, 2843–2851 (1999).
Phair, R. D. & Misteli, T. High mobility of proteins in the mammalian cell nucleus. Nature 404, 604–609 (2000).The relatively slow diffusion rates of several nuclear GFP chimaeras are due to the high density of binding sites for the chimaeras throughout the nucleus. A kinetic model of the protein dynamics is used to calculate the on/off rates of chimaera binding.
Gordon, G. W., Chazotte, B., Wang, X. F. & Herman, B. Analysis of simulated and experimental fluorescence recovery after photobleaching. Data for two diffusing components. Biophys. J. 68, 766–778 (1995).
Periasamy, N. & Verkman, A. S. Analysis of fluorophore diffusion by continous distributions of diffusion coefficients: application to photobleaching measurements of multicomponent and anomalous diffusion. Biophys. J. 75, 557–567 (1998).
Kruhlak, M. J. et al. Reduced mobility of the alternate splicing factor (ASF) through the nucleoplasm and steady state speckle compartments. J. Cell Biol. 150, 41–51 (2000).
Houtsmuller, A. B. et al. Action of DNA repair endonuclease ERCC1/XPF in living cells. Science 284, 958–961 (2000).
Poo, M. M. & Cone, R. A. Lateral diffusion of rhodopsin in the photoreceptor membrane. Nature 247, 438–441 (1974).
Marguet, D. et al. Lateral diffusion of GFP-tagged H2Ld molecules and of GFP–TAP1 reports on the assemby and retention of these molecules in the endoplasmic reticulum. Immunity 11, 231–240 (1999).Characterizes the effect of the formation of large protein complexes of TAP and MHC class I in the ER membrane on the diffusion rate, and calculates the relative contributions of several diffusing species to a single apparent diffusion coefficient.
Zaal, K. J. M. et al. Golgi membranes are absorbed into and reemerge from the ER during mitosis. Cell 99, 589–601 (1999).Uses FRAP to measure the mobilty of a Golgi membrane protein during interphase and metaphase to test whether the Golgi fragments or fuses with the endoplasmic reticulum during mitosis. In addition, selective photobleaching is used to calculate the relative rates of transport between the ER and Golgi in both directions.
Saxton, M. Anomalous diffusion due to obstacles: a Monte Carlo study. Biophys. J. 66, 394–401 (1994).
Saxton, M. Anomalous diffusion due to binding: a Monte Carlo study. Biophys. J. 70, 1250–1262 (1996).
Adams, C. L., Chen, Y., Smith, S. J. & Nelson, W. J. Mechanisms of epithelial cell–cell adhesion and cell compaction revealed by high-resolution tracking of E-cadherin–green fluorescent-protein. J. Cell Biol. 142, 1105–1119 (1998).
Nehls, S. et al. Dynamics and retention of misfolded proteins in native ER membranes. Nature Cell Biol. 2, 288–295 (2000).The diffusion rates and mobility of misfolded aggregated ER membrane proteins are compared to correctly folded proteins and are found to be similar. Only conditions that globally perturb folding in the ER were found to have an effect on protein mobility.
Subramanian, K. & Meyer, T. Calcium-induced restructuring of nuclear envelope and endoplasmic reticulum calcium stores. Cell 89, 963–971 (1997).
Terasaki, M., Jaffe, L. A., Hunnicutt, G. R. & Hammer, J. A. R. Structural change of the endoplasmic reticulum during fertilization: evidence for loss of membrane continuity using the green fluorescent protein. Dev. Biol. 179, 320–328 (1996).
Kohler, R. H., Cao, J., Zipfel, W. R., Webb, W. W. & Hanson, M. R. Exchange of protein molecules through connections between higher plastids. Science 276, 2039–2042 (1997).
Storrie, B. et al. Recycling of Golgi-resident glycosyltransferases through the ER reveals a novel pathway and provides an explanation for nocodazole-induced Golgi scattering. J. Cell Biol. 143, 1505–1521 (1998).
Presley, J. F., Miller, C., Zaal, K., Ellenberg, J. & Lippincott–Schwartz, J. In vivo dynamics of COPI. Mol. Biol. Cell 9, S746 (1998).
Stephens, D. J., Lin-Marq, N., Pagano, A., Pepperkok, R. & Paccaud, J. P. COPI-coated ER-to-Golgi transport complexes segregate form COPII in close proximity to ER exit sites. J. Cell Sci. 113, 2177–2185 (2000).
Vasudevan, C. et al. The distribution and translocation of the G protein ADP-ribosylation factor 1 in live cells is determined by its GTPase activity. J. Cell Sci. 111, 1277–1285 (1998).
Oancea, E., Teruel, M. N., Quest, A. F. & Meyer, T. Green fluorescent protein (GFP)-tagged cysteine-rich domains from protein kinase C as fluorescent indicators of diacylglycerol signaling in living cells. J. Cell Biol. 140, 485–498 (1998).
Reits, E. A., Benham, A. M., Plougastel, B., Neefjes, J. & Trowsdale, J. Dynamics of the proteasome distribution in living cells. EMBO J. 16, 6087–6094 (1997).
Presley, J. F. et al. ER-to-Golgi transport visualized in living cells. Nature 389, 81–85 (1997).
Hirschberg, K. et al. Kinetic analysis of secretory protein traffic and characterization of Golgi to plasma membrane transport intermediates in living cells. J. Cell Biol. 143, 1485–1503 (1998).
Nakata, T., Terada, S. & Hirokawa, N. Visualization of the dynamics of synaptic vesicle and plasma membrane proteins in living axons. J. Cell Biol. 140, 659–674 (1998).
Wu, P. & Brand, L. Resonance energy transfer: methods and applications. Anal. Biochem. 218, 1–13 (1994).
Clegg, R. M. Fluorescence resonance energy transfer. Curr. Opin. Biotechnol. 6, 103–110 (1995).
Patterson, G. H., Piston, D. W. & Barisas, B. G. Förster distances between green fluorescent protein pairs. Anal. Biochem. 284, 438–440 (2000).
Pollok, B. A. & Heim, R. Using GFP in FRET-based applications. Trends Cell Biol. 9, 57–60 (1999).
Periasamy, A. & Day, R. N. Visualizing protein interactions in living cells using digitized GFP imaging and FRET microscopy. Methods Cell Biol. 58, 293–314 (1999).
Heim, R. & Tsien, R. Y. Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr. Biol. 6, 178–182 (1996).
Bastiaens, P. I. H. & Jovin, T. M. in Cell Biology: A Laboratory Handbook (ed. Celis, J. E.) 136–146 (Academic, New York, 1998).
Wouters, F. S. & Bastiaens, P. I. Fluorescence lifetime imaging of receptor tyrosine kinase activity in cells. Curr. Biol. 9, 1127–1130 (1999).Describes a clever assay to evaluate the phosphorylation state of a protein using FRET.
Bastiaens, P. I. & Squire, A. Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell. Trends Cell Biol. 9, 48–52 (1999).
Ng, T. et al. Imaging protein kinase Cα activation in cells. Science 283, 2085–2089 (1999).
Ng, T. et al. PKCα regulates β1 intergrin-dependent cell motility through association and control of integrin traffic. EMBO J. 18, 3909–3923 (1999).
Emmanouilidou, E. et al. Imaging Ca2+ concentration changes at the secretory vesicle surface with a recombinant targeted cameleon. Curr. Biol. 9, 915–918 (1999).
Romoser, V. A., Hinkle, P. M. & Persechini, A. Detection in living cells of Ca2+-dependent changes in the fluorescence emission of an indicator composed of two green fluorescent protein variants linked by a calmodulin-binding sequence. A new class of fluorescent indicators. J. Biol. Chem. 272, 13270–13274 (1997).
Miyawaki, A. et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388, 882–887 (1997).
Zaccolo, M. et al. A genetically encoded, fluorescent indicator for cyclic AMP in living cells. Nature Cell Biol. 2, 25–29 (2000).
Honda, A. et al. Spatiotemporal dynamics of guanosine 3′,5′–cyclic monophosphate revealed by a genetically encoded, fluorescent indicator. Proc. Natl Acad. Sci. USA 98, 2437–2442 (2001).
Mitra, R. D., Silva, C. M. & Youvan, D. C. Fluorescence resonance energy transfer between blue-emitting and red-shifted excitation derivatives of the green fluorescent protein. Gene 173, 13–17 (1996).
Mahajan, N. P., Harrison-Shostak, D. C., Michaux, J. & Herman, B. Novel mutant green fluorescent protein protease substrates reveal the activation of specific caspases during apoptosis. Chem. Biol. 6, 401–409 (1999).
Sagot, I., Bonneu, M., Balguerie, A. & Aigle, M. Imaging fluorescence resonance energy transfer between two green fluorescent proteins in living yeast. FEBS Lett. 447, 53–57 (1999).
Vanderklish, P. W. et al. Marking synaptic activity in dendritic spines with a calpain substrate exhibiting fluorescence resonance energy transfer. Proc. Natl Acad. Sci. USA 97, 2253–2258 (2000).
Xu, X. et al. Detection of programmed cell death using fluorescence energy transfer. Nucleic Acids Res. 26, 2034–2035 (1998).
Zlokarnik, G. et al. Quantitation of transcription and clonal selection of single living cells with β-lactamase as reporter. Science 279, 84–88 (1998).
Xu, Y., Piston, D. W. & Johnson, C. H. A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proc. Natl Acad. Sci. USA 96, 151–156 (1999).
Siegel, R. M. et al. Fas preassociation required for apoptosis signaling and dominant inhibition by pathogenic mutations. Science 288, 2354–2357 (2000).
Chan, F. K.-M. et al. A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science 288, 2351–2354 (2000).
Teruel, M. N. & Meyer, T. Translocation and reversible localization of signaling proteins: a dynamic future for signal transduction. Cell 103, 181–184 (2000).
Simons, K. & Ikonen, E. Functional rafts in cell membranes. Nature 387, 569–572 (1997).
Simons, K. & Toomre, D. Lipid rafts and signal transduction. Nature Rev. Mol. Cell Biol. 1, 31–39 (2000).
Varma, R. & Mayor, S. GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394, 798–801 (1998).Uses a variation of FRET, homotransfer, to infer the structure of lipid rafts on the cell surface.
Kenworthy, A. K. & Edidin, M. Distribution of a glycosylphosphatidylinositol-anchored protein at the apical surface of MDCK cells examined at a resolution of <100 Å using imaging fluorescence resonance energy transfer. J. Cell Biol. 142, 69–84 (1998).Uses acceptor photobleaching FRET to assess the organization of lipid rafts at the cell surface. Contains a detailed discussion of the theory for interpreting FRET from donors and acceptors constrained to membranes.
Kenworthy, A. K., Petranova, N. & Edidin, M. High-resolution FRET microscopy of cholera toxin B-subunit and GPI-anchored proteins in cell plasma membranes. Mol. Biol. Cell 11, 1645–1655 (2000).
Rigler, R. & Elson, E. S. Fluorescence Correlation Spectroscopy (Springer, New York, 2001).
Maiti, S., Haupts, V. & Webb, W. W. Fluorescence correlation spectroscopy: diagnostics for sparse molecules. Proc. Natl Acad. Sci. USA 94, 11753–11757 (1997).
Eigen, M. & Rigler, R. Sorting single molecules: application to diagnostics and evolutionary biotechnology. Proc. Natl Acad. Sci. USA 91, 5740–5747 (1994).
Van Craenenbroeck, E. & Engelborghs, Y. Fluorescence correlation spectroscopy: molecular recognition at the single molecule level. J. Mol. Recog. 13, 93–100 (2000).
Cluzel, P., Surette, M. & Leibler, S. An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. Science 287, 1652–1655 (2000).
Heinze, K. G., Koltermann, A. & Schwille, P. Simultaneous two-photon excitation of distinct labels for dual-color fluorescence crosscorrelation analysis. Proc. Natl Acad. Sci. USA 97, 10377–10382 (2000).
Elowitz, M. B., Surette, M. G., Wolf, P. E., Stock, J. & Leibler, S. Photoactivation turns green fluorescent protein red. Curr. Biol. 7, 809–812 (1997).
Yokoe, H. & Meyer, T. Spatial dynamics of GFP-tagged proteins investigated by local fluorescence enhancement. Nature Biotechnol. 14, 1252–1256 (1996).
Creemers, T. H., Lock, A. J., Subramaniam, V., Jovin, T. M. & Volker, S. Photophysics and optical switching in green fluorescent protein mutants. Proc. Natl Acad. Sci. USA 97, 2974–2978 (2000).
Dickson, R. M., Cubitt, A. B., Tsien, R. Y. & Moerner, W. E. On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388, 355–358 (1997).
Griffin, B. A., Adams, S. R. & Tsien, R. Y. Specific covalent labeling of recombinant protein molecules inside live cells. Science 281, 269–272 (1998).
Farinas, J. & Verkman, A. S. Receptor-mediated targeting of fluorescent probes in living cells. J. Biol. Chem. 274, 7603–7606 (1999).
Sund, S. E. & Axelrod, D. Actin dynamics at the living cell submembrane imaged by total internal reflection fluorescence photobleaching. Biophys. J. 79, 1655–1669 (2000).
Toomre, D. K., Steyer, J. A., Almers, W. & Simons, K. Observing fusion of constitutive membrane traffic in real time by evanescent wave microscopy. J. Cell Biol. 149, 33–40 (2000).
Schmoranzer, J., Goulian, M., Axelrod, D. & Simon, S. M. Imaging constitutive exocytosis with total internal reflection fluorescence microscopy. J. Cell Biol. 149, 23–32 (2000).
Brown, E. B., Wu, E. S., Zipfel, W. & Webb, W. W. Measurement of molecular diffusion in solution by multiphoton fluorescence photobleaching recovery. Biophys. J. 77, 2837–2849 (1999).
Petersen, N. O. et al. Analysis of membrane protein cluster densities and sizes in situ by image correlation spectroscopy. Faraday Discuss. 289–305; discussion 331–343 (1998).
Subramaniam, V., Kirsch, A. K. & Jovin, T. M. Cell biological applications of scanning near-field optical microscopy (SNOM). Cell. Mol. Biol. 44, 689–700 (1998).
Klar, T., Jakobs, S., Dyba, M., Egner, A. & Hell, S. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl Acad. Sci. USA 97, 8206–8210 (2000).
Nagorni, M. & Hell, S. W. 4Pi-confocal microscopy provides three-dimensional images of the microtubule network with 100- to 150-nm resolution. J. Struct. Biol. 123, 236–247 (1998).
Patterson, G. H., Knobel, S. M., Sharif, W. D., Kain, S. R. & Piston, D. W. Use of green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys. J. 73, 2782–2790 (1997).
Baird, G. S., Zacharias, D. A. & Tsien, R. Y. Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. Proc. Natl Acad. Sci. USA 97, 11984–11989 (2000).
Dictenberg, J. B. et al. Pericentrin and γ-tubulin form a protein complex and are organized into a novel lattice at the centrosome. J. Cell Biol. 141, 163–174 (1998).
Bastiaens, P. I., Majoul, I. V., Verveer, P. J., Soling, H. D. & Jovin, T. M. Imaging the intracellular trafficking and state of the AB5 quaternary structure of cholera toxin. EMBO J. 15, 4246–4253 (1996).
Damjanovich, S. et al. Structural hierarchy in the clustering of HLA class I molecules in the plasma membrane of human lymphoblastoid cells. Proc. Natl Acad. Sci. USA 92, 1122–1126 (1995).
Jovin, T. M. & Arndt-Jovin, D. J. in Cell Structure and Function by Microspectrofluorimetry (eds Kohen, E., Ploem, J. S. & Hirschberg, J. G.) 99–117 (Academic, Orlando, Florida,1989).
Nagai, Y. et al. A fluorescent indicator for visualizing cAMP-induced phosphorylation in vivo. Nature Biotechnol. 18, 313–316 (2000).
Kam, Z., Volberg, T. & Geiger, B. Mapping of adherens junction components using microscopic resonance energy transfer imaging. J. Cell Sci. 108, 1051–1062 (1995).An elegant FRET microscopy study using immunofluorescence labelling to probe the distribution of proteins in adherens junctions.
Xia, Z., Zhou, Q., Lin, J. & Liu, Y. Stable SNARE complex prior to evoked synaptic vesicle fusion revealed by fluorescence resonance energy transfer. J. Biol. Chem. 276, 1766–1771 (2001).
Wouters, F. S., Bastiaens, P. I. H., Wirtz, K. W. A. & Jovin, T. M. FRET microscopy demonstrates molecular assocation of non-specific lipid transfer protein (nsL-TP) with fatty acid oxidation enzymes in peroxisomes. EMBO J. 17, 7179–7189 (1998).
Bacsó, Z., Bene, L., Bodnár, A., Matkó, J. & Damjanovich, S. A photobleaching energy transfer analysis of CD8/MHC-I and LFA-1/ICAM-1 interactions in CTL-target cell conjugates. Immunol. Lett. 54, 151–156 (1996).
Gadella, T. W. Jr & Jovin, T. M. Oligomerization of epidermal growth factor receptors on A431 cells studied by time-resolved fluorescence imaging microscopy. A stereochemical model for tyrosine kinase receptor activation. J. Cell Biol. 129, 1543–1558 (1995).
Sako, Y., Minoghchi, S. & Yanagida, T. Single-molecule imaging of EGFR signalling on the surface of living cells. Nature Cell Biol. 2, 168–172 (2000).Combines single-molecule fluorescence techniques, total internal reflection microscopy, and FRET to follow the dimerization of the EGFR upon EGF binding.
Angers, S. et al. Detection of β2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proc. Natl Acad. Sci. USA 97, 3684–3689 (2000).
Schütz, G. J., Kada, G., Pastushenko, V. P. & Schindler, H. Propeties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J. 19, 892–901 (2000).
Mahajan, N. P. et al. Bcl-2 and Bax interactions in mitochondria probed with green fluorescent protein and fluorescence resonance energy transfer. Nature Biotechnol. 16, 547–552 (1998).
Ruehr, M. L., Zakhary, D. R., Damron, D. S. & Bond, M. Cyclic AMP-dependent protein kinase binding to A-kinase anchoring proteins in living cells by fluorescence resonance energy transfer of green fluorescent protein fusion proteins. J. Biol. Chem. 274, 33092–33096 (1999).
Kindzelskii, A. L., Yang, Z., Nabel, G. J., Todd, R. F. R. & Petty, H. R. Ebola virus secretory glycoprotein (sGP) diminishes Fcγ RIIIB-to-CR3 proximity on neutrophils. J. Immunol. 164, 953–958 (2000).
Damelin, M. & Silver, P. A. Mapping interactions between nuclear transport factors in living cells reveals pathways through the nuclear pore complex. Mol. Cell 5, 133–140 (2000).Novel interactions between nuclear transport factors and nucleoporins are revealed in a FRET-based protein–protein interaction screen in yeast.
Day, R. N. Visualization of Pit-1 transcription factor interactions in the living cell nucleus by fluorescence resonance energy transfer microscopy. Mol. Endocrinol. 12, 1410–1419 (1998).
Schmid, J. A. et al. Dynamics of NF-κB and IκBα studied with green fluorescent protein (GFP) fusion proteins. Investigation of GFP-p65 binding to DNA by fluorescence resonance energy transfer. J. Biol. Chem. 275, 17035–17042 (2000).
Llopis, J. et al. Ligand-dependent interactions of coactivators steroid receptor coactivator-1 and peroxisome proliferator-activated receptor binding protein with nuclear hormone receptors can be imaged in live cells and are required for transcription. Proc. Natl Acad. Sci. USA 97, 4363–4368 (2000); erratum 97, 9819 (2000).
Prufer, K., Racz, A., Lin, G. C. & Barsony, J. Dimerization with retinoid X receptors promotes nuclear localization and subnuclear targeting of vitamin D receptors. J. Biol. Chem. 275, 41114–41123 (2000).
Brock, R., Vamosi, G., Vereb, G. & Jovin, T. M. Rapid characterization of green fluorescent protein fusion proteins on the molecular and cellular level by fluorescence correlation microscopy. Proc. Natl Acad. Sci. USA 96, 10123–10128 (1999).Provides a concise overview of how FCS and confocal microscopy can be linked to study the diffusional mobility of GFP-tagged proteins in cells.
Brock, R. & Jovin, T. M. Fluorescence correlation microscopy (FCM)-fluorescence correlation spectroscopy (FCS) taken into the cell. Cell Mol. Biol. 44, 847–856 (1998).
Brock, R., Hink, M. A. & Jovin, T. M. Fluorescence correlation microscopy of cells in the presence of autofluorescence. Biophys. J. 75, 2547–2557 (1998).
Wachsmuth, M., Waldeck, W. & Langowski, J. Anomalous diffusion of fluorescent probes inside living cell nuclei investigated by spatially-resolved fluorescence correlation spectroscopy. J. Mol. Biol. 298, 677–689 (2000).
Schwille, P., Korlach, J. & Webb, W. W. Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes. Cytometry 36, 176–182 (1999).
Politz, J. C., Browne, E. S., Wolf, D. E. & Pederson, T. Intranuclear diffusion and hybridization state of oligonucleotides measured by fluorescence correlation spectroscopy in living cells. Proc. Natl Acad. Sci. USA 95, 6043–6048 (1998).
Köhler, R. H., Schwille, P., Webb, W. W. & Hanson, M. R. Active protein transport through plastid tubles: velocity quantified by fluorescence correlation spectroscopy. J. Cell Sci. 113, 3921–3930 (2000).
Terada, S., Kinjo, M. & Hirokawa, N. Oligomeric tubulin in large transporting complex is transported via kinesin in squid giant axons. Cell 103, 141–155 (2000).
Rigler, R. et al. Specific binding of proinsulin C-peptide to human cell membranes. Proc. Natl Acad. Sci. USA 96, 13318–13323 (1999).
Trier, U., Olah, Z., Kleuser, B. & Schafer-Korting, M. Fusion of the binding domain of Raf-1 kinase with green fluorescent protein for activated Ras detection by fluorescence correlation spectroscopy. Pharmazie 54, 263–268 (1999).
Terry, B. R., Matthews, E. K. & Haseloff, J. Molecular characterisation of recombinant green fluorescent protein by fluorescence correlation microscopy. Biochem. Biophys. Res. Commun. 217, 21–27 (1995).
Haupts, U., Maiti, S., Schwille, P. & Webb, W. W. Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy. Proc. Natl Acad. Sci. USA 95, 13573–13578 (1998).
Acknowledgements
We thank members of the Lippincott-Schwartz laboratory for helpful comments on the manuscript. We also thank Gregoire Bonnet for useful discussions on fluorescence correlation spectroscopy. Anne Kenworthy was supported by a National Research Council–NICHD Research Associateship. Erik Snapp was supported by a PRAT Fellowship.
Author information
Authors and Affiliations
Supplementary information
Related links
Related links
DATABASE LINKS
tumour necrosis factor receptor 1
tumour necrosis factor receptor 2
FURTHER INFORMATION
Compact barrel-like structure of GFP
ENCYCLOPEDIA OF LIFE SCIENCES
Glossary
- GREEN FLUORESCENT PROTEIN
-
Fluorescent protein cloned from the jellyfish Aequoria victoria. The most frequently used mutant, EGFP, is excited at 488 nm and has an emission maximum at 510 nm.
- RED FLUORESCENT PROTEIN
-
Fluorescent protein cloned from the sea anemone Discosoma striata with an excitation maximum of 558 nm and emission maximum at 583 nm.
- ULTRAVIOLET-LIGHT-INDUCED DNA DAMAGE
-
Ultraviolet light promotes a covalent linkage of two adjacent pyrimidine bases (most often two thymines) in DNA.
- NUCLEAR ENVELOPE
-
Double membrane that surrounds the nucleus. The outer nuclear membrane is continuous with the endoplasmic reticulum. The outer nuclear membrane is connected to the inner nuclear membrane at nuclear pores.
- NUCLEAR LAMINA
-
Electron-dense layer lying on the nucleoplasmic side of the inner membrane of a nucleus.
- TUNICAMYCIN
-
An antibiotic that inhibits the glycosylation of asparagine residues yielding carbohydrate-poor glycoproteins.
- ARF1
-
Small GTPase that regulates the assembly of coats and vesicle budding.
- ɛCOP
-
One of seven subunits of the COPI coatomer complex.
- SEC13
-
Component of the COPII coat complex.
- PROTEASOMES
-
Large multisubunit protease complex that selectively degrades intracellular proteins. Targeting to proteasomes most often occurs through attachment of multi-ubiquitin tags.
- CYAN FLUORESCENT PROTEIN
-
S65A, Y66W, S72A, N1461I, M153T, V163A mutant of green fluorescent protein with excitation peak of 434 nm and an emission maximum at 477 nm.
- YELLOW FLUORESCENT PROTEIN
-
S65G, V68L, S72A, T203Y mutant of green fluorescent protein with an excitation peak of 514 nm and an emission maximum at 527 nm.
- QUANTUM YIELD
-
The probability of luminescence occurring in given conditions, expressed by the ratio of the number of photons (the quanta of light) emitted by the luminescing species to the number absorbed.
- FITC
-
Fluorescent dye with an excitation maximum of 492 nm and an emission maximum of 520 nm.
- RHODAMINE
-
Fluorescent dye with an excitation maximum at 550 nm and an emission maximum at 590 nm.
- CY3
-
Fluorescent cynanine dye with an excitation maximum at 550 nm and an emission maximum at 570 nm.
- CY5
-
Fluorescent cynanine dye with an excitation maximum at 650 nm and an emission maximum at 670 nm.
- REPORTER CONSTRUCTS
-
Artificial proteins engineered to act as intracellular sensors. Often consist of a pair of GFP mutants that act as a FRET pair linked by a peptide that undergoes conformational changes or is physically altered in response to the intracellular environment or enzyme activity.
- CY3.5
-
Fluorescent cynanine dye with an excitation maximum at 580 nm and an emission maximum at 590 nm.
- AUTOCORRELATION FUNCTION
-
Mathematical function that is used to extract statistical properties of time-dependent noise. Used to analyse time-dependent fluctuations of fluorescence intensity in an FCS experiment to find similarities within the signal — for example, a correlation time reflecting diffusion of a fluorescent protein through a sample volume.
- TWO-PHOTON MICROSCOPY
-
A form of multiphoton microscopy.
- FLASH
-
A membrane-permeable fluorophore (fluorescein arsenical helix binder) that specifically, non-covalently, and reversibly binds a recombinant protein motif containing four cysteines at the i, i+1, i+4, and i+5 positions.
- SINGLE-CHAIN ANTIBODIES
-
Peptides derived from immunoglobulins (which usually consist of two heavy chains and two light chains). These peptides do not oligomerize and have specific affinity for an antigen.
- TOTAL INTERNAL REFLECTION MICROSCOPY
-
Fluorescence microscopy technique with significant depth discrimination, that can selectively excite only those fluorescent molecules within 100 nm of the interface between a cell and a coverslip.
- MULTIPHOTON MICROSCOPY
-
Microscopy technique that uses the simultaneous absorbance of two or more photons of low energy (long wavelength) to excite fluorophores normally excited with single photons of shorter wavelengths. The technique reduces photodamage and permits imaging of much thicker samples.
- IMAGE CORRELATION SPECTROSCOPY
-
Technique that measures the density and degree of aggregation of fluorescent particles using autocorrelation analysis of images from laser scanning confocal microscopy. Can be used, for example, to measure quantitatively the state of aggregation of receptors on the cell surface.
- ATOMIC FORCE MICROSCOPY
-
A microscope that nondestructively measures the forces (at the atomic level) between a sharp probing tip (which is attached to a cantilever spring) and a sample surface. The microscope images structures at the resolution of individual atoms.
- 4-PI MICROSCOPE
-
A microscope that combines the wavefronts produced by two opposed high-aperture lenses and a two-photon excitation laser to allow three-dimensional imaging of transparent biological specimens with an axial resolution in the 100–140-nm range.
- STIMULATED EMISSION MICROSCOPE
-
(Also referred to as ultrafast-dynamics microscope). A light microscope that increases the spatial resolution of a fluorescent sample by exciting the fluorophore with a femtosecond laser pulse followed by a quenching time-delayed red-shifted femtosecond laser pulse that depletes fluorescence at the focal rim surrounding the focal volume.
Rights and permissions
About this article
Cite this article
Lippincott-Schwartz, J., Snapp, E. & Kenworthy, A. Studying protein dynamics in living cells. Nat Rev Mol Cell Biol 2, 444–456 (2001). https://doi.org/10.1038/35073068
Issue Date:
DOI: https://doi.org/10.1038/35073068
This article is cited by
-
Avidity-based bright and photostable light-up aptamers for single-molecule mRNA imaging
Nature Chemical Biology (2023)
-
Viewing life without labels under optical microscopes
Communications Biology (2023)
-
Machine-learning-powered extraction of molecular diffusivity from single-molecule images for super-resolution mapping
Communications Biology (2023)
-
3D-printed engineered bacteria-laden gelatin/sodium alginate composite hydrogels for biological detection of ionizing radiation
Bio-Design and Manufacturing (2023)
-
Regression Analysis of Confocal FRAP and its Application to Diffusion in Membranes
Journal of Fluorescence (2022)