Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The junction-resolving enzymes

Key Points

  • Homologous recombination is an ancient process that functions to conserve genetic integrity and create genetic diversity. It relies on the formation of Holliday junctions — four-stranded DNA structures that create physical links between DNA duplexes. This review concentrates on the endonucleases that recognize this structure and catalyse its cleavage — the junction-resolving enzymes.

  • Recent progress includes the characterization of junction-resolving enzymes in the archaea and their viruses, the identification of the pox viral resolving enzyme responsible for resolution of viral concatamers, and the detection of a possible mammalian junction migrating and resolving complex analogous to the Escherichia coli RuvABC machinery

  • Studies in E. coli have emphasized the important role of homologous recombination in rescuing stalled or collapsed DNA replication forks, and the control of crossover versus non-crossover recombinant formation by the RuvABC complex. These findings are likely to be relevant in the eukaryotes.

  • Structural and sequence analysis indicates that most of the junction-resolving enzymes can be fitted into two main superfamilies of proteins. Sequence-selective enzymes including RuvC and CceI fall into the integrase class, whereas T7 endonuclease I and Hjc are classed with nucleases. All are probably evolved from a common metal-ion-binding domain.

  • Junction-resolving enzymes bind four-way DNA junctions in dimeric form. Binding is highly structure selective, but all the enzymes significantly distort the structure of the DNA on binding. Some of the resolving enzymes also have pronounced sequence selectivity at the cleavage stage; this can effectively ensure cleavage of Holliday junctions and not other branched DNA structures.

  • Several junction-resolving enzymes show an accelerated second strand cleavage, which is particularly pronounced for RuvC. This is probably the result of a strained DNA-enzyme complex, and ensures a productive resolution event.

  • The structures of four junction-resolving enzymes have been determined by crystallography. The protein folds have little in common. The active sites of T7 endonuclease I and Hjc are very similar to those of type II restriction enzymes, suggesting a two-metal-ion cleavage mechanism.

Abstract

Junction-resolving enzymes are ubiquitous nucleases that are important for DNA repair and recombination and act on DNA molecules containing branch points, especially four-way junctions. They show a pronounced selectivity for the structure of the DNA substrate but, despite its importance, the structural selectivity is not well understood. This poses an intriguing challenge in molecular recognition on a relatively large scale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cleavage of DNA junctions by junction-resolving enzymes.
Figure 2: Homologous recombination and DNA replication.
Figure 3: Crystal structures of four junction-resolving enzymes.
Figure 4: Family tree of junction-resolving enzymes.
Figure 5: Proposed active site of endonuclease I.
Figure 6: Mechanism to account for the acceleration of second-strand cleavage.

Similar content being viewed by others

References

  1. Holliday, R. A mechanism for gene conversion in fungi. Genet. Res. 5, 282–304 (1964).

    Article  Google Scholar 

  2. Cox, M. M. et al. The importance of repairing stalled replication forks. Nature 404, 37–41 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  3. Kowalczykowski, S. C. Initiation of genetic recombination and recombination-dependent replication . Trends Biochem. Sci. 25, 156– 165 (2000).A comprehensive review of the recent advances in understanding the relationship between DNA replication and recombination.

    Article  CAS  PubMed  Google Scholar 

  4. Komori, K., Sakae, S., Shinagawa, H., Morikawa, K. & Ishino, Y. A Holliday junction resolvase from Pyrococcus furiosus : functional similarity to Escherichia coli RuvC provides evidence for conserved mechanism of homologous recombination in bacteria, eukarya, and archaea. Proc. Natl Acad. Sci. USA 96, 8873–8878 (1999). First identification of an archaeal Holliday-junction-resolving enzyme, using random expression of Pyrococcus furiosus genes in Escherichia coli .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kvaratskhelia, M. & White, M. F. An archaeal Holliday junction resolving enzyme from Sulfolobus solfataricus exhibits unique properties. J. Mol. Biol. 295, 193– 202 (2000).Characterization of an archaeal resolving enzyme, of probable viral origin, that cuts Holliday junctions uniquely on continuous strands.

    Article  CAS  PubMed  Google Scholar 

  6. Kvaratskhelia, M., Wardleworth, B. N., Norman, D. G. & White, M. F. A conserved nuclease domain in the archaeal Holliday junction resolving enzyme HJC. J. Biol. Chem. 275, 25540– 25546 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Kvaratskhelia, M., Wardleworth, B. N. & White, M. F. Multiple Holliday junction resolving enzyme activities in the Crenarchaeota and Euryarchaeota. FEBS Lett. 491, 243–246 ( 2001).

    Article  CAS  PubMed  Google Scholar 

  8. Stuart, D., Ellison, K., Graham, K. & McFadden, G. In vitro resolution of poxvirus replicative intermediates into linear minichromosomes with hairpin termini by a virally induced Holliday junction endonuclease. J. Virol. 66, 1551–1563 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Baroudy, B. M., Venkatesan, S. & Moss, B. Incompletely base-paired flip-flop terminal loops link the two DNA strands of the vaccinia virus genome into one uninterrupted polynucleotide chain. Cell 28, 315–324 (1982).

    Article  CAS  PubMed  Google Scholar 

  10. Dickie, P., Morgan, A. R. & McFadden, G. Cruciform extrusion in plasmids bearing the replicative intermediate configuration of a poxvirus telomere. J. Mol. Biol. 196, 541–558 ( 1987).

    Article  CAS  PubMed  Google Scholar 

  11. Garcia, A. D., Aravind, L., Koonin, E. & Moss, B. Bacterial-type DNA Holliday junction resolvases in eukaryotic viruses. Proc. Natl Acad. Sci. USA 97, 8926–8931 (2001).Identification of the pox viral Holliday junction-resolving enzyme, and its relationship with RuvC and Cce1. PubMed

    Article  Google Scholar 

  12. Lilley, D. M. J. & White, M. F. Resolving the relationships of resolving enzymes. Proc. Natl Acad. Sci. USA 97, 9351–9353 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. West, S. C. & Korner, A. Cleavage of cruciform DNA structures by an activity from Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 82, 6445–6449 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jeyaseelan, R. & Shanmugam, G. Human placental endonuclease cleaves Holliday junctions. Biochem. Biophys. Res. Commun. 156, 1054–1060 ( 1988).

    Article  CAS  PubMed  Google Scholar 

  15. Elborough, K. M. & West, S. C. Resolution of synthetic Holliday junctions in DNA by an endonuclease from calf thymus. EMBO J. 9, 2931–2936 ( 1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hyde, H., Davies, A. A., Benson, F. E. & West, S. C. Resolution of recombination intermediates by a mammalian activity functionally analogous to Escherichia coli RuvC resolvase. J. Biol. Chem. 269, 5202–5209 ( 1994).

    CAS  PubMed  Google Scholar 

  17. Constantinou, A., Davies, A. A. & West, S. C. Branch migration and Holliday junction resolution catalyzed by activities from mammalian cells. Cell 104, 259–268 (2001). First evidence of RuvABC-like activities co-purifying in a eukaryotic cell.

    Article  CAS  PubMed  Google Scholar 

  18. Panyutin, I. G., Biswas, I. & Hsieh, P. A pivotal role for the structure of the Holliday junction in DNA branch migration. EMBO J. 14, 1819 –1826 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Duckett, D. R. et al. The structure of the Holliday junction and its resolution . Cell 55, 79–89 (1988).

    Article  CAS  PubMed  Google Scholar 

  20. Grigoriev, M. & Hsieh, P. A histone octamer blocks branch migration of a Holliday junction. Mol. Cell. Biol. 17, 7139–7150 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rafferty, J. B. et al. Crystal structure of DNA recombination protein RuvA and a model for its binding to the Holliday junction. Science 274, 415–421 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Hargreaves, D. et al. Crystal structure of E. coli RuvA with bound DNA Holliday junction at 6 Å resolution. Nature Struct. Biol. 5, 441–446 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Nishino, T., Ariyoshi, M., Iwasaki, H., Shinagawa, H. & Morikawa, K. Functional analyses of the domain structure in the Holliday junction binding protein RuvA. Structure 6, 11–21 (1998 ).

    Article  CAS  PubMed  Google Scholar 

  24. Roe, S. M. et al. Crystal structure of an octameric RuvA–Holliday junction complex. Mol. Cell 2, 361– 372 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Parsons, C. A., Stasiak, A., Bennett, R. J. & West, S. C. Structure of a multisubunit complex that promotes DNA branch migration. Nature 374, 375–378 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  26. van Gool, A. J., Shah, R., Mézard, C. & West, S. C. Functional interactions between the Holliday junction resolvase and the branch migration motor of Escherichia coli. EMBO J. 17, 1838–1845 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Van Gool, A. J., Hajibagheri, N. M., Stasiak, A. & West, S. C. Assembly of the Escherichia coli RuvABC resolvasome directs the orientation of Holliday junction resolution. Genes Dev. 13, 1861–1870 (1999). Demonstration that the RuvAB branch migration machinery controls the choice of strands cleaved by the resolving enzyme RuvC, with implications for control of crossing over.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cromie, G. A. & Leach, D. R. F. Control of crossing over. Mol. Cell 6, 815–826 ( 2000).A demonstration of how biases in crossover versus non-crossover recombination events in Escherichia coli are controlled by RuvABC.

    Article  CAS  PubMed  Google Scholar 

  29. Michel, B., Recchia, G. D., Penel-Colin, M., Ehrlich, S. D. & Sherratt, D. J. Resolution of Holliday junctions by RuvABC prevents dimer formation in rep mutants and UV-irradiated cells. Mol. Microbiol. 37, 180– 191 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Michel, B. Replication fork arrest and DNA recombination. Trends Biochem. Sci. 25, 173–178 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  31. Postow, L. et al. Positive torsional strain causes the formation of a four-way junction at replication forks. J. Biol. Chem. (in the press).

  32. McGlynn, P. & Lloyd, R. G. Modulation of RNA polymerase by (p)ppGpp reveals a RecG-dependent mechanism for replication fork progression . Cell 101, 35–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Seigneur, M., Bidnenko, V., Ehrlich, S. D. & Michel, B. RuvAB acts at arrested replication forks. Cell 95, 419–430 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Lim, D. S. & Hasty, P. A mutation in mouse RAD51 results in an early embryonic lethal that is suppressed by a mutation in p53. Mol. Cell. Biol. 16, 7133–7143 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tsuzuki, T. et al. Targeted disruption of the RAD51 gene leads to lethality in embryonic mice. Proc. Natl Acad. Sci. USA 93, 6236–6240 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ariyoshi, M. et al. Atomic structure of the RuvC resolvase: a Holliday junction-specific endonuclease from E. coli. Cell 78, 1063–1072 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Saito, A., Iwasaki, H., Ariyoshi, M., Morikawa, K. & Shinagawa, H. Identification of four acidic amino acids that constitute the catalytic centre of the RuvC Holliday junction resolvase. Proc. Natl Acad. Sci. USA 92, 7470–7474 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Raaijmakers, H. et al. X-ray structure of T4 endonuclease VII: a DNA junction resolvase with a novel fold and unusual domain-swapped dimer architecture. EMBO J. 18, 1447–1458 ( 1999).The crystal structure of T4 endonuclease VII, showing an unusual architecture.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pöhler, J. R. G., Giraud-Panis, M.-J. E. & Lilley, D. M. J. T4 endonuclease VII selects and alters the structure of the four-way DNA junction; binding of a resolution-defective mutant enzyme . J. Mol. Biol. 260, 678– 696 (1996).

    Article  PubMed  Google Scholar 

  40. Giraud-Panis, M.-J. E., Duckett, D. R. & Lilley, D. M. J. The modular character of a DNA junction resolving enzyme: a zinc binding motif in T4 endonuclease VII. J. Mol. Biol. 252, 596–610 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  41. Birkenbihl, R. P. & Kemper, B. Localization and characterization of the dimerization domain of Holliday structure resolving endonuclease VII of phage T4. J. Mol. Biol. 280, 73–83 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Giraud-Panis, M.-J. E. & Lilley, D. M. J. T4 endonuclease VII: importance of a histidine-aspartate cluster within the zinc-binding domain . J. Biol. Chem. 271, 33148– 33155 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Golz, S., Christoph, A., Birkenkamp Demtroder, K. & Kemper, B. Identification of amino acids of endonuclease VII essential for binding and cleavage of cruciform DNA. Eur. J. Biochem. 245, 573–580 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Hadden, J. M., Convery, M. A., Déclais, A.-C., Lilley, D. M. J. & Phillips, S. E. V. Crystal structure of the Holliday junction-resolving enzyme T7 endonuclease I at 2.1 Å resolution. Nature Struct. Biol. 8, 62–67 (2001).The crystal structure of T7 endonuclease I, revealing the mixed active site.

    Article  CAS  PubMed  Google Scholar 

  45. Guo, F., Gopaul, D. N. & Van Duyne, G. D. Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse. Nature 389, 40–46 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Déclais, A.-C., Hadden, J. M., Phillips, S. E. V. & Lilley, D. M. J. The active site of the junction-resolving enzyme T7 endonuclease I. J. Mol. Biol. 307, 1145–1158 (2001).

    Article  PubMed  CAS  Google Scholar 

  47. Chen, Y., Narendra, U., Iype, L. E., Cox, M. M. & Rice, P. A. Crystal structure of a Flp recombinase–Holliday junction complex: assembly of an active oligomer by helix swapping. Mol. Cell 6, 885–897 ( 2000).

    CAS  PubMed  Google Scholar 

  48. Bond, C. S., Kvaratskhelia, M., Richard, D., White, M. F. & Hunter, W. N. Structure of Hjc, a Holliday junction resolvase, from Sulfolobus solfataricus. Proc. Natl Acad. Sci. USA 98, 5509–5514 ( 2001).The crystal structure of the archaeal Hjc enzyme confirms its close relationship with the type II restriction enzymes and allows prediction of a model for junction binding and cleavage.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nishino, T., Komori, K., Tsuchiya, D., Ishino, Y. & Morikawa, K. Crystal structure of the archaeal Holliday junction resolvase Hjc and implications for DNA recognition. Structure 9, 197–204 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. White, M. F. & Lilley, D. M. J. Characterization of a Holliday junction resolving enzyme from Schizosaccharomyces pombe. Mol. Cell. Biol. 17, 6465–6471 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Venclovas, C. & Siksnys, V. Different enzymes with similar structures involved in Mg2+-mediated polynucleotidyl transfer. Nature Struct. Biol. 2, 838–841 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Ristriani, T. et al. HPV oncoprotein E6 is a structure-dependent DNA-binding protein that recognizes four-way junctions. J. Mol. Biol. 296 , 1189–1203 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Sharples, G. J., Ingleston, S. M. & Lloyd, R. G. Holliday junction processing in bacteria: insights from the evolutionary conservation of RuvABC, RecG, and RusA. J. Bacteriol. 181, 5543–5550 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Parkinson, M. J. & Lilley, D. M. J. The junction-resolving enzyme T7 endonuclease I: quaternary structure and interaction with DNA. J. Mol. Biol. 270, 169–178 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. White, M. F. & Lilley, D. M. J. The structure-selectivity and sequence-preference of the junction-resolving enzyme CCE1 of Saccharomyces cerevisiae. J. Mol. Biol. 257, 330– 341 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Giraud-Panis, M.-J. E. & Lilley, D. M. J. Structural recognition and distortion by the DNA junction-resolving enzyme RusA. J. Mol. Biol. 278, 117–133 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. White, M. F. & Lilley, D. M. J. The resolving enzyme CCE1 of yeast opens the structure of the four-way DNA junction. J. Mol. Biol. 266, 122–134 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  58. Kosak, H. G. & Kemper, B. W. Large-scale preparation of T4 endonuclease VII from over-expressing bacteria. Eur. J. Biochem. 194, 779–784 ( 1990).

    Article  CAS  PubMed  Google Scholar 

  59. Iwasaki, H., Takahagi, M., Shiba, T., Nakata, A. & Shinagawa, H. Escherichia coli RuvC protein is an endonuclease that resolves the Holliday structure. EMBO J. 10, 4381–4389 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Duckett, D. R., Giraud-Panis, M.-E. & Lilley, D. M. J. Binding of the junction-resolving enzyme bacteriophage T7 endonuclease I to DNA: separation of binding and catalysis by mutation . J. Mol. Biol. 246, 95– 107 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. Bennett, R. J. & West, S. C. Structural analysis of the RuvC–Holliday junction complex reveals an unfolded junction. J. Mol. Biol. 252, 213–226 (1995).

    Article  CAS  PubMed  Google Scholar 

  62. White, M. F. & Lilley, D. M. J. Interaction of the resolving enzyme YDC2 with the four-way DNA junction. Nucleic Acids Res. 26, 5609–5616 ( 1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Déclais, A.-C. & Lilley, D. M. J. Extensive central disruption of a four-way junction on binding CCE1 resolving enzyme . J. Mol. Biol. 296, 421– 433 (2000).Cce1 breaks the central base pairs of the junction upon binding, shown by large increases in the fluorescent quantum yield of 2-aminopurine selectively incorporated at the centre.

    Article  PubMed  CAS  Google Scholar 

  64. Shah, R., Bennett, R. J. & West, S. C. Genetic recombination in E. coli: RuvC protein cleaves Holliday junctions at resolution hotspots in vitro. Cell 79, 853–864 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  65. Schofield, M. J., Lilley, D. M. J. & White, M. F. Dissection of the sequence specificity of the Holliday junction endonuclease CCE1. Biochemistry 37, 7733–7740 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Fogg, J. M., Schofield, M. J., White, M. F. & Lilley, D. M. J. Sequence and functional-group specificity for cleavage of DNA junctions by RuvC of Escherichia coli. Biochemistry 38, 11349–11358 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Parkinson, M. J., Pöhler, J. R. G. & Lilley, D. M. J. Catalytic and binding mutants of the junction-resolving enzyme endonuclease I of bacteriophage T7: role of acidic residues. Nucleic Acids Res. 27, 682–689 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bolt, E. L., Sharples, G. J. & Lloyd, R. G. Identification of three aspartic acid residues essential for catalysis by the RusA Holliday junction resolvase. J. Mol. Biol. 286, 403–415 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  69. Wardleworth, B. N., Kvaratskhelia, M. & White, M. F. Site-directed mutagenesis of the yeast resolving enzyme Cce1 reveals catalytic residues and relationship with the intron-splicing factor Mrs1. J. Biol. Chem. 275, 23725– 23728 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Komori, K. et al. Mutational analysis of the Pyrococcus furiosus Holliday junction resolvase hjc revealed functionally important residues for dimer formation, junction DNA binding, and cleavage activities. J. Biol. Chem. 275, 40385–40391 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  71. Kvaratskhelia, M., George, S. J., Cooper, A. & White, M. F. Quantitation of metal ion and DNA junction binding to the Holliday junction endonuclease Cce1. Biochemistry 38, 16613 –16619 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Daiyasu, H., Komori, K., Sakae, S., Ishino, Y. & Toh, H. Hjc resolvase is a distantly related member of the type II restriction endonuclease family. Nucleic Acids Res. 28, 4540– 4543 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Makarova, K. S., Aravind, L. & Koonin, E. V. Holliday junction resolvases and related nucleases: identification of new families, phyletic distribution and evolutionary trajectories . Nucleic Acids Res. 28, 3417– 3432 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Hickman, A. B. et al. Unexpected structural diversity in DNA recombination: the restriction endonuclease connection. Mol. Cell 5, 1025–1034 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Wah, D. A., Hirsch, J. A., Dorner, L. F., Schildkraut, I. & Aggarwal, A. K. Structure of the multimodular endonuclease FokI bound to DNA. Nature 388, 97–100 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Giraud-Panis, M.-J. E. & Lilley, D. M. J. Near-simultaneous DNA cleavage by the subunits of the junction-resolving enzyme T4 endonuclease VII. EMBO J. 16, 2528–2534 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fogg, J. M., Schofield, M. J., Déclais, A.-C. & Lilley, D. M. J. The yeast resolving enzyme CCE1 makes sequential cleavages in DNA junctions within the lifetime of the complex. Biochemistry 39 , 4082–4089 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Birkenbihl, R. P. & Kemper, B. Endonuclease VII has two DNA-binding sites each composed from one N- and one C-terminus provided by different subunits of the protein dimer. EMBO J. 17, 4527–4534 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shah, R., Cosstick, R. & West, S. C. The RuvC protein dimer resolves Holliday junctions by a dual incision mechanism that involves base-specific contacts. EMBO J. 16, 1464–1472 ( 1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fogg, J. M. & Lilley, D. M. J. Ensuring productive resolution by the junction-resolving enzyme RuvC: Large enhancement of second-strand cleavage rate. Biochemistry 39, 16125– 16134 (2001).

    Article  CAS  Google Scholar 

  81. Lilley, D. M. J. et al. Nomenclature Committee of the International Union of Biochemistry: a nomenclature of junctions and branchpoints in nucleic acids. Recommendations 1994. Eur. J. Biochem. 230, 1–2 (1995).

    Article  CAS  PubMed  Google Scholar 

  82. Clegg, R. M., Murchie, A. I. H., Zechel, A. & Lilley, D. M. J. The solution structure of the four-way DNA junction at low salt concentration; a fluorescence resonance energy transfer analysis. Biophys. J. 66, 99–109 ( 1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Churchill, M. E., Tullius, T. D., Kallenbach, N. R. & Seeman, N. C. A Holliday recombination intermediate is twofold symmetric. Proc. Natl Acad. Sci. USA 85, 4653–4656 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cooper, J. P. & Hagerman, P. J. Geometry of a branched DNA structure in solution. Proc. Natl Acad. Sci. USA 86, 7336–7340 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Murchie, A. I. H. et al. Fluorescence energy transfer shows that the four-way DNA junction is a right-handed cross of antiparallel molecules. Nature 341, 763–766 ( 1989).

    Article  CAS  PubMed  Google Scholar 

  86. Nowakowski, J., Shim, P. J., Prasad, G. S., Stout, C. D. & Joyce, G. F. Crystal structure of an 82 nucleotide RNA–DNA complex formed by the 10–23 DNA enzyme. Nature Struct. Biol. 6, 151–156 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Ortiz-Lombardía, M. et al. Crystal structure of a DNA Holliday junction. Nature Struct. Biol. 6, 913–917 (1999).

    Article  PubMed  Google Scholar 

  88. Eichman, B. F., Vargason, J. M., Mooers, B. H. M. & Ho, P. S. The Holliday junction in an inverted repeat DNA sequence: sequence effects on the structure of four-way junctions. Proc. Natl Acad. Sci. USA 97, 3971–3976 ( 2000).The crystal structure of a four-way DNA junction in the stacked X-shape conformation. This is the first structure that is completely free of base mismatches.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Miick, S. M., Fee, R. S., Millar, D. P. & Chazin, W. J. Crossover isomer bias is the primary sequence-dependent property of immobilized Holliday junctions. Proc. Natl Acad. Sci. USA 94, 9080–9084 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Grainger, R. J., Murchie, A. I. H. & Lilley, D. M. J. Exchange between stacking conformers in a four-way DNA junction. Biochemistry 37, 23– 32 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Lilley, D. M. J. Structures of helical junctions in nucleic acids. Quart. Rev. Biophys. 33, 109–159 ( 2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

Rad51

Hjc

Cce1

RuvC

RusA

RecG

FURTHER INFORMATION

Lilley lab

White lab

ENCYCLOPEDIA OF LIFE SCIENCES

Eukaryotic recombination: initiation by double-strand breaks

Glossary

BRANCH MIGRATION

The process of exchange of base-pairing partners at a helical junction formed from homologous sequences.

INTEGRASE

The integrase protein of phage-λ is a tyrosine-recombinase protein that mediates the site-specific integration of the phage DNA into the host genome.

HETERODUPLEX

A DNA duplex formed by association between two homologous strands, each of which was previously hybridized to different complements. If the homology is less than 100%, the heteroduplex will contain base mismatches that will require repair.

GENETIC DRIFT

Random changes occurring in a gene over time, often with little or no phenotype.

RESTRICTION ENDONUCLEASES

Sequence-specific nucleases used by bacteria in defence against phage infection. These can be subclassified into different types according to their target and mode of action.

SUBUNIT-EXCHANGE RATES

In free solution, the subunits of junction-resolving enzymes may exchange between dimers. In general, this is characterized by a single exponential, giving the half-time for the exchange process. These vary widely for the known junction-resolving enzymes.

pI VALUE

The pH at which the ionization state of charged amino-acid side chains results in an overall electrical neutrality.

TRANSITION STATE

The point of highest energy along a reaction potential energy surface.

ELECTRON PARAMAGNETIC RESONANCE SPECTROSCOPY

(EPR spectroscopy). Observation of the transitions between spin states of an unpaired electron in a magnetic field. The unpaired 3d5 electrons of manganese can be observed by EPR, providing information on the chemical environment of the metal ion.

ISOTHERMAL TITRATION CALORIMETRY

(ITC). Involves the measurement of heat absorbed or evolved as two interacting components are titrated in a cell. This provides a direct measure of the reaction enthalpy. The association constant can also be measured, from which other thermodynamic parameters can be calculated.

TN7 TRANSPOSASE

A polynucleotide transferase involved in the transposition of Tn7.

LEWIS ACID

A broader definition of acidity that encompasses any positively charged group, such as a metal cation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lilley, D., White, M. The junction-resolving enzymes. Nat Rev Mol Cell Biol 2, 433–443 (2001). https://doi.org/10.1038/35073057x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35073057x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing