Key Points
-
DNA-sequence information can, in principle, be retrieved from archaeological and palaeontological remains that are less than ∼100,000 years old.
-
In most circumstances, only multicopy DNA, such as mitochondrial DNA (mtDNA) and chloroplast DNA, can be retrieved.
-
Extensive control experiments are necessary to ensure that results are not caused by contamination with modern or recent DNA.
-
Human remains are particularly difficult to work with because human DNA is almost ubiquitously present on old specimens and laboratory equipment.
-
Owing to the technical difficulties, not all published results in the field are reliable.
-
Using the techniques for ancient DNA retrieval, zoological and botanical museum collections from the past two centuries are important repositories of molecular genetic information.
-
The biological relationships and history of many Ice Age animals have been clarified using ancient DNA.
-
The mtDNA of Neanderthals has been shown not to be present among contemporary humans.
-
Coprolites represent a source of genetic information about animals and their diet that is often more reliable than bones from the same time period.
-
Cold environments are particularly conducive to DNA preservation.
-
Population studies of extinct animals, plants and Neanderthals are becoming possible.
Abstract
DNA that has been recovered from archaeological and palaeontological remains makes it possible to go back in time and study the genetic relationships of extinct organisms to their contemporary relatives. This provides a new perspective on the evolution of organisms and DNA sequences. However, the field is fraught with technical pitfalls and needs stringent criteria to ensure the reliability of results, particularly when human remains are studied.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Exploring prehistoric plant use by molecular analyses of Neolithic grave goods
Vegetation History and Archaeobotany Open Access 04 March 2023
-
The first record of exceptionally-preserved spiral coprolites from the Tsagan-Tsab formation (lower cretaceous), Tatal, western Mongolia
Scientific Reports Open Access 12 April 2021
-
DNA stability: a central design consideration for DNA data storage systems
Nature Communications Open Access 01 March 2021
Access options
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Höss, M., Jaruga, P., Zastawny, T. H., Dizdaroglu, M. & Pääbo, S. DNA damage and DNA sequence retrieval from ancient tissues. Nucleic Acids Res. 24, 1304–1307 (1996).
Pääbo, S. Ancient DNA: extraction, characterization, molecular cloning, and enzymatic amplification. Proc. Natl Acad. Sci. USA 86, 1939–1943 (1989).
Pääbo, S. & Wilson, A. C. Miocene DNA sequences — a dream come true? Curr. Biol. 1, 45–46 (1991).
Lindahl, T. Instability and decay of the primary structure of DNA. Nature 362, 709–715 (1993). Provides a comprehensive review of DNA damage that includes what is expected to occur in archaeological and palaeontological specimens.
Collins, M. Neanderthal DNA: not just old but old and cold. Nature (in the press).
Thomas, W. K., Pääbo, S., Villablanca, F. X. & Wilson, A. C. Spatial and temporal continuity of kangaroo rat populations shown by sequencing mitochondrial DNA from museum specimens. J. Mol. Evol. 31, 101–112 (1990).
Groombridge, J. J., Jones, C. G., Bruford, M. W. & Nichols, R. A. 'Ghost' alleles of the Mauritius kestrel. Nature 403 , 616 (2000).
Cooper, A. et al. Ancient DNA and island endemics. Nature 381, 484 (1996).
Thomas, R. H., Schaffner, W., Wilson, A. C. & Pääbo, S. DNA phylogeny of the extinct marsupial wolf. Nature 340, 465–467 (1989).
Krajewski, C., Driskell, A. C., Baverstock, P. R. & Braun, M. J. Phylogenetic relationships of the thylacine (Mammalia: Thylacinidae) among dasyuroid marsupials: evidence from cytochrome b DNA sequences. Proc. R. Soc. Lond. B 250, 19–27 (1992).
Christidis, L., Leeton, P. R. & Westerman, M. Were bowerbirds part of the New Zealand fauna? Proc. Natl Acad. Sci. USA 93, 3898– 3901 (1996); erratum 93, 14992 (1996).
Krajewski, C., Buckley, L. & Westerman, M. DNA phylogeny of the marsupial wolf resolved. Proc. R. Soc. Lond. B 264, 911–917 (1997).
Handt, O., Höss, M., Krings, M. & Pääbo, S. Ancient DNA: methodological challenges. Experientia 50, 524–529 (1994).
Höss, M., Handt, O. & Pääbo, S. in The Polymerase Chain Reaction (eds Mullis, K., Ferre, F. & Gibbs, R.) 257–264 (Birkhauser, Boston, Massachusetts, 1994).
Greenwood, A., Capelli, C., Possnert, G. & Pääbo, S. Nuclear DNA sequences from Late Pleistocene megafauna. Mol. Biol. Evol. 16, 1466–1473 ( 1999).
Lawlor, D. A., Dickel, C. D., Hauswirth, W. W. & Parham, P. Ancient HLA genes from 7,500-year-old archaeological remains. Nature 349, 785–788 ( 1991).
Poinar, H. N., Höss, M., Bada, J. L. & Pääbo, S. Amino acid racemization and the preservation of ancient DNA. Science 272, 864–866 ( 1996).Presents amino-acid analysis as a tool to substantiate claims that DNA can (or cannot) survive in ancient organic remains.
Poinar, H. N. & Stankiewicz, B. A. Protein preservation and DNA retrieval from ancient tissues. Proc. Natl Acad. Sci. USA 96, 8426–8431 (1999).
Handt, O., Krings, M., Ward, R. H. & Pääbo, S. The retrieval of ancient human DNA sequences. Am. J. Hum. Genet. 59, 368–376 (1996).
Morin, P., Chambers, K., Boesch, C. & Vigilant, L. Quantitative DNA analysis from noninvasive samples for accurate microsatellite genotyping of wild chimpanzees (Pan troglodytes verus). Mol. Ecol. 10 (in the press).
Lindahl, T. Recovery of antediluvian DNA. Nature 365, 700 (1993).
Austin, J. J., Ross, A. J., Smith, A. B., Fortey, R. A. & Thomas, R. H. Problems of reproducibility — does geologically ancient DNA survive in amber-preserved insects? Proc. R. Soc. Lond. B 264, 467–474 (1997).
Austin, J. J., Smith, A. B. & Thomas, R. H. Paleontology in a molecular world: the search for authentic ancient DNA. Trends Ecol. Evol. 12, 303–306 (1997).
Stankiewicz, B., Poinar, H., Briggs, D., Evershed, R. & Poinar, G. Chemical preservation of plants and insects in natural resins. Proc. R. Soc. Lond. B 265, 641– 647 (1998).
Sidow, A., Wilson, A. C. & Pääbo, S. Bacterial DNA in Clarkia fossils. Phil. Trans. R. Soc. Lond. B 333, 429–433 (1991).
Zischler, H., Geisert, H., von Haeseler, A. & Pääbo, S. A nuclear 'fossil' of the mitochondrial D-loop and the origin of modern humans . Nature 378, 489–492 (1995).
Cooper, A. et al. Independent origins of New Zealand moas and kiwis. Proc. Natl Acad. Sci. USA 89, 8741– 8744 (1992).
Cooper, A. et al. Complete mitochondrial genome sequences of two extinct moas clarify ratite evolution. Nature 409, 704 –707 (2001).The first determination of complete mitochondrial DNAs from fossil remains.
Leonard, J. A., Wayne, R. K. & Cooper, A. From the cover: population genetics of ice age brown bears. Proc. Natl Acad. Sci. USA 97, 1651 –1654 (2000).
Pääbo, S. Of bears, conservation genetics, and the value of time travel. Proc. Natl Acad. Sci. USA 97, 1320– 1321 (2000).
Vila, C. et al. Widespread origins of domestic horse lineages. Science 291, 474–477 ( 2001).
Loreille, O. et al. Ancient DNA analysis reveals divergence of the cave bear, Ursus spelaeus, and brown bear, Ursus arctos, lineages. Curr. Biol. 11, 200–203 (2001).
Krings, M. et al. Neandertal DNA sequences and the origin of modern humans. Cell 90, 19–30 ( 1997).The first determination of a Neanderthal mitochondrial DNA sequence, including an extensive set of controls to support the authenticity of DNA sequence.
Krings, M., Geisert, H., Schmitz, R. W., Krainitzki, H. & Pääbo, S. DNA sequence of the mitochondrial hypervariable region II from the neandertal type specimen. Proc. Natl Acad. Sci. USA 96, 5581–5585 (1999).
Ingman, M., Kaessmann, H., Pääbo, S. & Gyllensten, U. Mitochondrial genome variation and the origin of modern humans. Nature 408, 708–713 ( 2000).
Adcock, G. et al. Mitochondrial DNA sequences in ancient Australians: implications for modern human origins. Proc. Natl Acad. Sci. USA 98, 537–542 (2001).
Pääbo, S. Human evolution. Trends Cell Biol. 9, M13 –M16 (1999).
Kaessmann, H., Wiebe, V., Weiss, G. & Pääbo, S. Great ape DNA sequences reveal a reduced diversity and an expansion in humans. Nature Genet. 27, 155–156 (2001).
Ovchinnikov, I. V. et al. Molecular analysis of Neanderthal DNA from the northern Caucasus . Nature 404, 490–493 (2000).
Krings, M. et al. A view of Neandertal genetic diversity. Nature Genet. 26, 144–146 ( 2000).
Rogers, A. R. & Harpending, H. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 9, 552–569 ( 1992).
Höss, M., Kohn, M., Pääbo, S., Knauer, F. & Schröder, W. Excrement analysis by PCR . Nature 359, 199 ( 1992).
Kohn, M., Knauer, F., Stoffella, A., Schröder, W. & Pääbo, S. Conservation genetics of the European brown bear — a study using excremental PCR of nuclear and mitochondrial sequences. Mol. Ecol. 4, 95 –103 (1995).
Kohn, M. H. et al. Estimating population size by genotyping faeces. Proc. R. Soc. Lond. B 266, 657–663 (1999).
Vasan, S. et al. An agent cleaving glucose-derived protein crosslinks in vitro and in vivo. Nature 382, 275 –278 (1996).
Poinar, H. N. et al. Molecular coproscopy: dung and diet of the extinct ground sloth Nothrotheriops shastensis. Science 281 , 402–406 (1998).
Hansen, R. M. Shasta ground sloth food habits, Rampart Cave, Arizona. Paleobiology 4, 302–319 ( 1978).
Hofreiter, M. et al. A molecular analysis of ground sloth diet through the last glaciation. Mol. Ecol. 9, 1975– 1984 (2000).A diachronical study of ground sloth diet over almost 20,000 years, illustrating the usefulness of coprolites for molecular studies.
Poinar, H. et al. A molecular analysis of dietary diversity for three archaic Native Americans. Proc. Natl Acad. Sci. USA 98, 4317–4322.
Klein, R. The Human Career 2nd edn (Chicago Univ. Press, Chicago, 1999).
Monsalve, M. V., Cardenas, F., Guhl, F., Delaney, A. D. & Devine, D. V. Phylogenetic analysis of mtDNA lineages in South American mummies. Ann. Hum. Genet. 60, 293 –303 (1996).
Izagirre, N. & de la Rua, C. An mtDNA analysis in ancient Basque populations: implications for haplogroup V as a marker for a major paleolithic expansion from southwestern Europe. Am. J. Hum. Genet. 65, 199–207 (1999).
Oota, H., Saitou, N., Matsushita, T. & Ueda, S. Molecular genetic analysis of remains of a 2,000-year-old human population in China — and its relevance for the origin of the modern Japanese population . Am. J. Hum. Genet. 64, 250– 258 (1999).
Schultes, T., Hummel, S. & Herrmann, B. Amplification of Y-chromosomal STRs from ancient skeletal material. Hum. Genet. 104, 164– 166 (1999).
Wang, L. et al. Genetic structure of a 2,500-year-old human population in China and its spatiotemporal changes. Mol. Biol. Evol. 17 , 1396–1400 (2000).
Higuchi, R., Bowman, B., Freiberger, M., Ryder, O. A. & Wilson, A. C. DNA sequences from the quagga, an extinct member of the horse family. Nature 312, 282–284 (1984).
Janczewski, D. N., Yuhki, N., Gilbert, D. A., Jefferson, G. T. & O'Brien, S. J. Molecular phylogenetic inference from saber-toothed cat fossils of Rancho La Brea. Proc. Natl Acad. Sci. USA 89, 9769–9773 ( 1992).
Hagelberg, E. et al. DNA from ancient mammoth bones. Nature 370, 333–334 (1994).
Höss, M., Pääbo, S. & Vereshchagin, N. K. Mammoth DNA sequences. Nature 370, 333 (1994).
Yang, H., Golenberg, E. M. & Shsoshani, J. Phylogenetic resolution within the Elephantidae using fossil DNA sequences from the American mastodon (Mammut americanum) as an outgroup. Proc. Natl Acad. Sci. USA 93, 1190–1194 (1996).
Ozawa, T., Hayashi, S. & Mikhelson, V. M. Phylogenetic position of mammoth and Steller's sea cow within Tethytheria demonstrated by mitochondrial DNA sequences . J. Mol. Evol. 44, 406– 413 (1997).
Noro, M., Masuda, R., Dubrovo, I. A., Yoshida, M. C. & Kato, M. Molecular phylogenetic inference of the woolly mammoth Mammuthus primigenius, based on complete sequences of mitochondrial cytochrome b and 12S ribosomal RNA genes. J. Mol. Evol. 46, 314–326 (1998).
Hänni, C., Laudet, V., Stehelin, D. & Taberlet, P. Tracking the origins of the cave bear (Ursus spelaeus) by mitochondrial DNA sequencing . Proc. Natl Acad. Sci. USA 91, 12336– 12340 (1994).
Robinson, T. J., Bastos, A. D., Halanych, K. M. & Herzig, B. Mitochondrial DNA sequence relationships of the extinct blue antelope Hippotragus leucophaeus. Naturwissenschaften 83 , 178–182 (1996).
Höss, M., Dilling, A., Currant, A. & Pääbo, S. Molecular phylogeny of the extinct ground sloth Mylodon darwinii. Proc. Natl Acad. Sci. USA 93, 181– 185 (1996).
Bailey, J. F. et al. Ancient DNA suggests a recent expansion of European cattle from a diverse wild progenitor species. Proc. R. Soc. Lond. B 263, 1467–1473 (1996).
Trewick, S. A. Flightlessness and phylogeny amongst endemic rails (aves: Rallidae) of the New Zealand region. Phil. Trans. R. Soc. Lond. B 352 , 429–446 (1996).
Houde, P., Cooper, A., Leslie, E., Strand, A. E. & Montano, G. A. in Avian Molecular Evolution Systems and Systematics (ed. Mindell, D. P.) 121–158 (Academic, London, 1997).
Westerman, M., Springer, M. S., Dixon, J. & Krajewski, C. Molecular relationships of the extinct pig-footed bandicoot Chaeropus ecaudatus (Marsupialia: Perameloidea) using 12S rRNA sequences. J. Mamm. Evol. 6, 271–288 ( 1999).
Sorenson, M. D. et al. Relationships of the extinct moa-nalos, flightless Hawaiian waterfowl, based on ancient DNA. Proc. R. Soc. Lond. B 266, 2187–2193 (1999).
Lalueza-Fox, C., Bertranpetit, J., Alcover, J. A., Shailer, N. & Hagelberg, E. Mitochondrial DNA from Myotragus balearicus, an extinct bovid from the Balearic Islands. J. Exp. Zool. 288, 56–62 ( 2000).
Acknowledgements
We thank Qin Zhan-Xiang for providing the cave bear samples; and the Max Planck Society, the Deutsche Forschungsgemeinschaft and the Bundesministerium für Bildung und Forschung for financial support.
Author information
Authors and Affiliations
Related links
Glossary
- COPROLITES
-
Faecal material from humans and animals found at archaeological excavations.
- HYDANTOINS
-
Oxidation products of the pyrimidine bases (cytosine and thymine).
- PLEISTOCENE
-
The geological time period from two million to 10,000 years ago.
- RACEMIZATION
-
The change in the three-dimensional structure of amino acids from one form to a mirror image over time.
- PYROLYSIS GC/MS
-
An analysis in which macromolecules are decomposed by heat, and the products analysed by gas chromatography followed by mass spectrometry.
- MICROSATELLITES
-
A class of repetitive DNA that is made up of repeats that are 2–8 nucleotides in length. They can be highly polymorphic and are frequently used as molecular markers in population genetics studies.
- COMPETITIVE AND REAL-TIME QUANTITATIVE PCR
-
A PCR analysis in which the approximate number of molecules that initiate the reaction is measured either by competition with a template of known concentration or by accumulation of product throughout the PCR.
- DIAGENESIS
-
All physical, chemical and biological changes undergone by any material from the time of its initial deposition in the environment.
- CRETACEOUS
-
The geological time period from 144 to 65 million years ago.
- DIACHRONICAL
-
A continuous process over time rather than a process at one time point (synchronical).
- PERMAFROST
-
A layer below the surface soil that never thaws in subarctic regions.
- NEANDERTHAL
-
A hominid form, morphologically distinct from contemporary humans, that existed until ∼30,000 years ago in Europe and western Asia.
- COALESCENCE
-
The joining of genetic lineages to common ancestors when they are traced backwards in time.
- SCATS
-
Faecal material left behind by animals.
Rights and permissions
About this article
Cite this article
Hofreiter, M., Serre, D., Poinar, H. et al. Ancient DNA. Nat Rev Genet 2, 353–359 (2001). https://doi.org/10.1038/35072071
Issue Date:
DOI: https://doi.org/10.1038/35072071
This article is cited by
-
Exploring prehistoric plant use by molecular analyses of Neolithic grave goods
Vegetation History and Archaeobotany (2023)
-
Ancient DNA of Metagonimus yokogawai Recovered from Joseon Period Human Remains Newly Discovered at Goryeong County in South Korea
Acta Parasitologica (2022)
-
Effects of decomposition on the recoverability of biological fluid evidence
International Journal of Legal Medicine (2022)
-
DNA stability: a central design consideration for DNA data storage systems
Nature Communications (2021)
-
The first record of exceptionally-preserved spiral coprolites from the Tsagan-Tsab formation (lower cretaceous), Tatal, western Mongolia
Scientific Reports (2021)