Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Removal of chlorofluorocarbons by increased mass exchange between the stratosphere and troposphere in a changing climate


Chlorofluorocarbons (CFCs), along with bromine compounds, have been unequivocally identified as being responsible for most of the anthropogenic destruction of stratospheric ozone1. With curbs on emissions of these substances, the recovery of the ozone layer will depend on their removal from the atmosphere. As CFCs have no significant tropospheric removal process, but are rapidly photolysed above the lower stratosphere, the timescale for their removal is set mainly by the rate at which air is transported from the troposphere into the stratosphere2. Using a global climate model we predict that, in response to the projected changes in greenhouse-gas concentrations during the first half of the twenty-first century, this rate of mass exchange will increase by 3% per decade. This increase is due to more vigorous extra-tropical planetary waves emanating from the troposphere. We estimate that this increase in mass exchange will accelerate the removal of CFCs to an extent that recovery to levels currently predicted for 2050 and 2080 will occur 5 and 10 years earlier, respectively.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Mass exchange between the troposphere and stratosphere.
Figure 2: Predicted changes in planetary-wave flux.
Figure 3: Predicted tropospheric mass mixing ratio for CFC11 and CFC12.


  1. 1

    Stratospheric Ozone 1999 (UK Stratospheric Ozone Review Group, Seventh report, HMSO, 1999).

  2. 2

    Holton, J. R. et al. Stratosphere-troposphere exchange. Rev. Geophys. 33, 403–439 (1995).

    ADS  Article  Google Scholar 

  3. 3

    Butchart, N., Austin, J., Knight, J. R., Scaife, A. A. & Gallani, M. L. The response of the stratospheric climate to projected changes in the concentrations of the well-mixed greenhouse gases from 1992–2051. J. Clim. 13, 2142–2159 (2000).

    ADS  Article  Google Scholar 

  4. 4

    Butchart, N. & Austin, J. Middle atmosphere climatologies from the troposphere-stratosphere configuration of the UKMO's Unified Model. J. Atmos. Sci. 55, 2782–2809 (1998).

    ADS  Article  Google Scholar 

  5. 5

    Cullen, M. J. P. The unified forecast/climate model. Meteorol. Mag. 122, 81–94 (1983).

    Google Scholar 

  6. 6

    Gregory, D., Shutts, G. J. & Mitchell, J. R. A new gravity-wave-drag scheme incorporating anisotropic orography and low-level wave breaking: Impact upon the climate of the UK Meteorological Office Unified Model. Q. J. R. Meteorol. Soc. 124, 463–493 (1998).

    ADS  Article  Google Scholar 

  7. 7

    Mitchell, J. F. B., Johns, T. C., Gregory, J. M. & Tett, S. F. B. Climate response to increasing levels of greenhouse gases and sulphate aerosols. Nature 376, 501–504 (1995).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Houghton, J. T. et al. (eds) Climate Change 1995 Ch. 6 (Cambridge Univ. Press, Cambridge, 1996).

    Google Scholar 

  9. 9

    Rosenlof, K. H. Seasonal cycle of the residual mean meridional circulation in the stratosphere. J. Geophys. Res. 100, 5173–5191 (1995).

    ADS  Article  Google Scholar 

  10. 10

    Mote, P. W. et al. An atmospheric tape recorder: The imprint of tropical tropopause temperatures on stratospheric water vapor. J. Geophys. Res. 101, 3989–4006 (1996).

    ADS  Article  Google Scholar 

  11. 11

    Mote, P. W. et al. Vertical velocity, vertical diffusion, and dilution by midlatitude air in the tropical lower stratosphere. J. Geophys. Res. 103, 8561–8666 (1998).

    ADS  Article  Google Scholar 

  12. 12

    Yulaeva, E., Holton, J. R. & Wallace, J. M. On the cause of the annual cycle in tropical lower-stratospheric temperatures. J. Atmos. Sci. 51, 169–174 (1994).

    ADS  Article  Google Scholar 

  13. 13

    Andrews, D. G. & McIntrye, M. E. Planetary waves in horizontal and vertical shear: The generalized Eliassen-Palm relation and the mean zonal acceleration. J. Atmos. Sci. 33, 2031–2048 (1976).

    ADS  MathSciNet  Article  Google Scholar 

  14. 14

    Andrews, D. G. & McIntrye, M. E. Generalized Eliassen-Palm and Charney-Drazin theorems for waves on axisymmetric mean flows in compressible atmospheres. J. Atmos. Sci. 35, 175–185 (1978).

    ADS  Article  Google Scholar 

  15. 15

    Mahfouf, J. F., Cariolle, D., Royer, J.-F., Gelyn, J.-F. & Timbal, B. Response of the Météo-France climate model to changes in CO2 and sea surface temperature. Clim. Dyn. 9, 345–362 (1994).

    Article  Google Scholar 

  16. 16

    Rind, D., Shindell, D., Lonergan, P. & Balachandran, N. K. Climate change in the middle atmosphere. Part III: the doubled CO2 climate revisited. J. Clim. 11, 876–894 (1998).

    ADS  Article  Google Scholar 

  17. 17

    Haynes, P. H., Marks, C. J., McIntyre, M. E., Shepherd, T. G. & Shine, K. P. On the “downward control” of the extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci. 48, 651–678 (1991).

    ADS  Article  Google Scholar 

  18. 18

    Rosenlof, K. H. & Holton, J. R. Estimates of the stratospheric residual circulation using the downward control principle. J. Geophys. Res. 98, 10465–10479 (1993).

    ADS  Article  Google Scholar 

  19. 19

    Madronich, S. et al. in Scientific Assessment of Ozone Depletion: 1998 Ch. 11 (World Meteorological Organization, Geneva, 1999).

    Google Scholar 

  20. 20

    Brasseur, G. & Solomon, S. Aeronomy of the Middle Atmosphere (Reidel, Dordrecht, 1984).

    Book  Google Scholar 

  21. 21

    Ko, M. K. W. et al. in Report on the Concentrations, Lifetimes, and Trends of CFCs, Halons, and Related Species (eds Kaye, J. A., Penkett, S. A. & Ormond, F. M.) Ch. 5 (Reference publication 1339, NASA, Washington DC, 1994).

    Google Scholar 

  22. 22

    Shindel, D. T., Rind, D. & Lonergan, P. Increased polar stratospheric ozone losses and delayed eventual recovery owing to increasing greenhouse-gas concentrations. Nature 392, 589–592 (1998).

    ADS  Article  Google Scholar 

  23. 23

    Waibel, A. E. et al. Arctic ozone loss due to denitrification. Science 283, 2064–2068 (1999).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Austin, J., Knight, J. & Butchart, N. Three-dimensional chemical model simulations of the ozone layer: 1979–2015. Q. J. R. Meteorol. Soc. 126, 1533–1556 (2000).

    ADS  Article  Google Scholar 

  25. 25

    Austin, J., Butchart, N. & Knight, J. Three-dimensional chemical model simulations of the ozone layer: 2015–2055. Q. J. R. Meteorol. Soc. (in the press).

  26. 26

    Pawson, S. et al. The GCM-Reality Intercomparison Project for SPARC (GRIPS): Scientific issues and initial results. Bull Am. Meteorol. Soc. 81, 781–795 (2000).

    ADS  Article  Google Scholar 

  27. 27

    Hofmann, D. J. et al. in Scientific Assessment of Ozone Depletion: 1998 Ch. 12 (World Meteorological Organization, Geneva, 1999).

    Google Scholar 

  28. 28

    Andrews, D. G., Holton, J. R. & Leovy, C. B. Middle Atmosphere Dynamics Ch. 3 (Academic, London, 1987).

    Google Scholar 

  29. 29

    Dunkerton, T., Hsu, C.-P. F. & McIntyre, M. E. Some Eulerian and Lagrangian diagnostics for a model stratospheric warming. J. Atmos. Sci. 38, 819–843 (1981).

    ADS  Article  Google Scholar 

  30. 30

    Prinn, R. G. et al. in Scientific Assessment of Ozone Depletion: 1998 Ch. 1 (World Meteorological Organization, Geneva, 1999).

    Google Scholar 

Download references


We thank J. Austin, B. Callander, R. Derwent, J. Knight and R. Swinbank for comments. This work was supported by the Public Meteorological Services Research Programme of The Met Office, and the UK Department of the Environment, Transport and the Regions.

Author information



Corresponding author

Correspondence to Neal Butchart.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Butchart, N., Scaife, A. Removal of chlorofluorocarbons by increased mass exchange between the stratosphere and troposphere in a changing climate. Nature 410, 799–802 (2001).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing