Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

CaT1 manifests the pore properties of the calcium-release-activated calcium channel

Abstract

The calcium-release-activated Ca2+channel, ICRAC1,2,3, is a highly Ca2+-selective ion channel that is activated on depletion of either intracellular Ca2+ levels or intracellular Ca2+ stores. The unique gating of ICRAC has made it a favourite target of investigation for new signal transduction mechanisms; however, without molecular identification of the channel protein, such studies have been inconclusive. Here we show that the protein CaT1 (ref. 4), which has six membrane-spanning domains, exhibits the unique biophysical properties of ICRAC when expressed in mammalian cells. Like ICRAC, expressed CaT1 protein is Ca2+ selective, activated by a reduction in intracellular Ca2+ concentration, and inactivated by higher intracellular concentrations of Ca2+. The channel is indistinguishable from ICRAC in the following features: sequence of selectivity to divalent cations; an anomalous mole fraction effect; whole-cell current kinetics; block by lanthanum; loss of selectivity in the absence of divalent cations; and single-channel conductance to Na+ in divalent-ion-free conditions. CaT1 is activated by both passive and active depletion of calcium stores. We propose that CaT1 comprises all or part of the ICRAC pore.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Currents in CaT1-expressing CHO-K1 cells.
Figure 2: CaT1 monovalent currents.
Figure 3: CaT1 single-channel properties (inside-out patch).
Figure 4: Activation of CaT1 currents.
Figure 5: Single-channel CaT1 currents.

Similar content being viewed by others

References

  1. Lewis, R. S. Store-operated calcium channels. Adv. Second Messenger Phosphoprotein Res. 33, 279–307 (1999).

    Article  CAS  Google Scholar 

  2. Parekh, A. B. & Penner, R. Store depletion and calcium influx. Physiol. Rev. 77, 901–930 (1997).

    Article  CAS  Google Scholar 

  3. Clapham, D. E. Calcium signaling. Cell 80, 259–268 (1995).

    Article  CAS  Google Scholar 

  4. Peng, J. -B. et al. Molecular cloning and characterization of a channel-like transporter mediating intestinal calcium absorption. J. Biol. Chem. 274, 22739–22746 (1999).

    Article  CAS  Google Scholar 

  5. Putney, J. W. Jr Muscarinic, alpha-adrenergic and peptide receptors regulate the same calcium influx sites in the parotid gland. J. Physiol. (Lond.) 268, 139–149 (1977).

    Article  CAS  Google Scholar 

  6. Lewis, R. S. & Cahalan, M. D. Mitogen-induced oscillations of cytosolic Ca2+ and transmembrane Ca2+ current in human leukemic T cells. Cell Regul. 1, 99–112 (1989).

    Article  CAS  Google Scholar 

  7. Hoth, M. & Penner, R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355, 353–355 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Kerschbaum, H. H. & Cahalan, M. D. Single-channel recording of a store-operated Ca2+ channel in Jurkat T lymphocytes. Science 283, 836–839 (1999).

    Article  ADS  CAS  Google Scholar 

  9. Kerschbaum, H. H. & Cahalan, M. D. Monovalent permeability, rectification, and ionic block of store-operated calcium channels in Jurkat T lymphocytes. J. Gen. Physiol. 111, 521–537 (1998).

    Article  CAS  Google Scholar 

  10. Zweifach, A. & Lewis, R. S. Mitogen-regulated Ca2+ current of T lymphocytes is activated by depletion of intracellular Ca2+ stores. Proc. Natl Acad. Sci. USA 90, 6295–6299 (1993).

    Article  ADS  CAS  Google Scholar 

  11. Hoth, M. & Penner, R. Calcium release-activated calcium current in rat mast cells. J. Physiol. 465, 359–386 (1993).

    Article  CAS  Google Scholar 

  12. Hille, B. Ionic Channels of Excitable Membranes (Sinauer Associates, Sunderland, MA, 1992).

    Google Scholar 

  13. Lepple-Wienhues, A. & Cahalan, M. D. Conductance and permeation of monovalent cations through depletion-activated Ca2+ channels (ICRAC) in Jurkat T cells. Biophys. J. 71, 787–794 (1996).

    Article  CAS  Google Scholar 

  14. Fasolato, C. & Nilius, B. Store depletion triggers the calcium release-activated calcium current (I-Crac) in macrovascular endothelial cells—a comparison with Jurkat and embryonic kidney cell lines. Pflugers Archiv. 436, 69–74 (1998).

    Article  CAS  Google Scholar 

  15. Hoth, M. & Penner, R. Calcium release-activated calcium current in rat mast cells. J. Physiol. (Lond.) 465, 359–86 (1993).

    Article  CAS  Google Scholar 

  16. Fomina, A. F., Fanger, C. M., Kozak, J. A. & Cahalan, M. D. Single channel properties and regulated expression of Ca2+ release- activated Ca2+ (CRAC) channels in human T cells. J. Cell. Biol. 150, 1435–44 (2000).

    Article  CAS  Google Scholar 

  17. Zweifach, A. & Lewis, R. S. Slow calcium-dependent inactivation of depletion-activated calcium current. Store-dependent and-independent mechanisms. J. Biol. Chem. 270, 14445–14451 (1995).

    Article  CAS  Google Scholar 

  18. Montero, M., Alvarez, J. & Garcia-Sancho, J. Uptake of Ca2+ and refilling of intracellular Ca2+ stores in Ehrlich-ascites-tumour cells and in rat thymocytes. Biochem. J. 271, 535–540 (1990).

    Article  CAS  Google Scholar 

  19. Philipp, S. et al. A novel capacitative calcium entry channel expressed in excitable cells. EMBO J. 17, 4274–4282 (1998).

    Article  CAS  Google Scholar 

  20. Fierro, L. & Parekh, A. B. Substantial depletion of the intracellular Ca2+ stores is required for macroscopic activation of the Ca2+ release-activated Ca2+ current in rat basophilic leukaemia cells. J. Physiol. (Lond.) 522, 247–257 (2000).

    Article  CAS  Google Scholar 

  21. Peng, J. B. et al. Human calcium transport protein CaT1. Biochem. Biophys. Res. Commun. 278, 326–332 (2000).

    Article  CAS  Google Scholar 

  22. Peng, J. -B. et al. Rat kidney-specific calcium transporter in the distal nephron. J. Biol. Chem. 275, 28186–28194 (2000).

    CAS  Google Scholar 

  23. Vennekens, R. et al. Permeation and gating properties of the novel epithelial Ca2+ channel. J. Biol. Chem. 275, 3963–3969 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. D. Cahalan for discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. Clapham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yue, L., Peng, JB., Hediger, M. et al. CaT1 manifests the pore properties of the calcium-release-activated calcium channel. Nature 410, 705–709 (2001). https://doi.org/10.1038/35070596

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35070596

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing