Intermittent dislocation flow in viscoplastic deformation

Abstract

The viscoplastic deformation (creep) of crystalline materials under constant stress involves the motion of a large number of interacting dislocations1. Analytical methods and sophisticated ‘dislocation dynamics’ simulations have proved very effective in the study of dislocation patterning, and have led to macroscopic constitutive laws of plastic deformation2,3,4,5,6,7,8,9. Yet, a statistical analysis of the dynamics of an assembly of interacting dislocations has not hitherto been performed. Here we report acoustic emission measurements on stressed ice single crystals, the results of which indicate that dislocations move in a scale-free intermittent fashion. This result is confirmed by numerical simulations of a model of interacting dislocations that successfully reproduces the main features of the experiment. We find that dislocations generate a slowly evolving configuration landscape which coexists with rapid collective rearrangements. These rearrangements involve a comparatively small fraction of the dislocations and lead to an intermittent behaviour of the net plastic response. This basic dynamical picture appears to be a generic feature in the deformation of many other materials10,11,12. Moreover, it should provide a framework for discussing fundamental aspects of plasticity that goes beyond standard mean-field approaches that see plastic deformation as a smooth laminar flow.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Statistical properties of the acoustic energy bursts recorded in ice single crystals under constant stress.
Figure 2: Snapshot of the total stress field and arrangement of dislocations in a numerical simulation with vσ = 0.025.
Figure 3: Statistical properties of dislocation velocities and density obtained in numerical simulations.
Figure 4: Statistical properties of the energy bursts obtained in numerical simulations.

References

  1. 1

    Hirth, J. P. & Lothe, J. Theory of Dislocations (Krieger, Malabar, Florida, 1992).

    Google Scholar 

  2. 2

    Hähner, P., Bay, K. & Zaiser, M. Fractal dislocation patterning during plastic deformation. Phys. Rev. Lett. 81, 2470–2473 (1998).

    ADS  Article  Google Scholar 

  3. 3

    Zaiser, M., Bay, K. & Hähner, P. Fractal analysis of deformation-induced dislocation patterns. Acta Mater. 47, 2463–2476 (1999).

    CAS  Article  Google Scholar 

  4. 4

    Lepinoux, J. & Kubin, L. P. The dynamic organization of dislocation structures: A simulation. Scr. Metall. 21, 833–838 (1987).

    Article  Google Scholar 

  5. 5

    Amodeo, R. J. & Ghoniem, N. M. Dislocation dynamics. I. A proposed methodology for deformation micromechanics. Phys. Rev. B 41, 6958–6967 (1990).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Groma, I. & Pawley, G. S. Computer simulation of plastic behaviour of single crystals. Phil. Mag. A 67, 1459–1470 (1993).

    ADS  Article  Google Scholar 

  7. 7

    Fournet, R. & Salazar, J. M. Formation of dislocation patterns: Computer simulations. Phys. Rev. B 53, 6283–6290 (1996).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Gil Sevillano, J., Bouchaud, E. & Kubin, L. P. The fractal nature of gliding dislocation lines. Scr. Metall. Mater. 25, 355–360 (1991).

    Article  Google Scholar 

  9. 9

    Thomson, R. & Levine, L. Theory of strain percolation in metals. Phys. Rev. Lett. 81, 3884–3887 (1998).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Neuhäuser, H. in Dislocations in Solids (ed. Nabarro, F. R. N.) 319–440 (North-Holland, Amsterdam, 1983).

    Google Scholar 

  11. 11

    Becker, R. & Orowan, E. Über sprunghafte Dehnung von Zinkkristallen. Z. Phys. 79, 566–572 (1932).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Bengus, V. Z., Komnik, S. N. & Shititelman, O. B. Dislocation multiplication as a controlling factor of work-hardening. Phys. Stat. Sol. 14, 215–222 (1966).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Ananthakrishina, G. et al. Crossover from chaotic to self-organized critical dynamics in jerky flow of single crystals. Phys. Rev. E 60, 5455–5462 (1999).

    ADS  Article  Google Scholar 

  14. 14

    Hähner, P. On the foundations of stochastic dislocation dynamics. Appl. Phys. A 62, 473–481 (1996).

    ADS  Article  Google Scholar 

  15. 15

    Rouby, D., Fleischman, P. & Duvergier5, C. Un modèle de source d'émission acoustique pour l'analyse de l'émission continue et de l'émission par salves: I. Analyse théorique. Phil. Mag. A 47, 671–687 (1983).

    ADS  CAS  Google Scholar 

  16. 16

    Weiss, J. & Grasso, J. R. Acoustic emission in single crystals of ice. J. Phys. Chem. B 101, 6113–6117 (1997).

    CAS  Article  Google Scholar 

  17. 17

    Weiss, J., Lahaie, F. & Grasso, J. R. Statistical analysis of dislocation dynamics during viscoplastic deformation from acoustic emission. J. Geophys. Res. 105, 433–442 (2000).

    ADS  Article  Google Scholar 

  18. 18

    Duval, P., Ashby, M. F. & Andermann, I. Rate-controlling processes in the creep of polycrystalline ice. J. Phys. Chem. 87, 4066–4074 (1983).

    CAS  Article  Google Scholar 

  19. 19

    Petrenko, V. F. & Whitworth, R. W. Structure of ordinary ice I h. Part II: Defects in ice. Vol. 2: Dislocations and plane defects. (US Army Cold Regions Research and Engineering Laboratory Special Report 94-12, Hanover, New Hampshire, 1994).

  20. 20

    Kardar, M. Nonequilibrium dynamics of interfaces and lines. Phys. Rep. 301, 85–112 (1998).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Jensen, H. J. Self-Organized Criticality (Cambridge Univ. Press, Cambridge, 1998).

    Google Scholar 

Download references

Acknowledgements

We thank R. Pastor-Satorras, M. Rubí, A. Scala and M. Zaiser for useful discussions, and O. Brisaud, and F. Dominé for help in the preparation of single crystals. We acknowledge partial support from the European Network contract on “Fractal Structures and Self-organization”. J.W. is supported by the “Action thématique innovante” of Institut National des Sciences de l'Univers-CNRS. Acoustic emission monitoring devices were financed by Université Joseph Fourier.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M.-Carmen Miguel.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Miguel, MC., Vespignani, A., Zapperi, S. et al. Intermittent dislocation flow in viscoplastic deformation. Nature 410, 667–671 (2001). https://doi.org/10.1038/35070524

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing