Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Liquid crystalline spinning of spider silk


Spider silk has outstanding mechanical properties despite being spun at close to ambient temperatures and pressures using water as the solvent. The spider achieves this feat of benign fibre processing by judiciously controlling the folding and crystallization of the main protein constituents, and by adding auxiliary compounds, to create a composite material of defined hierarchical structure. Because the ‘spinning dope’ (the material from which silk is spun) is liquid crystalline, spiders can draw it during extrusion into a hardened fibre using minimal forces. This process involves an unusual internal drawdown within the spider's spinneret that is not seen in industrial fibre processing, followed by a conventional external drawdown after the dope has left the spinneret. Successful copying of the spider's internal processing and precise control over protein folding, combined with knowledge of the gene sequences of its spinning dopes, could permit industrial production of silk-based fibres with unique properties under benign conditions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The seven specialized glands and their different amino acid compositions of a typical Araneid orb weaver.
Figure 2: A spider's dragline spinneret.


  1. 1

    Fiber Economics Bureau. Manufactured Fiber Review 2000, Jan 2–53 (Fiber Economics Bureau, Washington, 1999).

    Google Scholar 

  2. 2

    O'Brien, J. P., Fahnestock, S. R., Termonia, Y. & Gardner, K. C. H. Nylons from nature: synthetic analogs to spider silk. Adv. Mater. 10, 1185–1197 (1998).

    CAS  Google Scholar 

  3. 3

    Tirrell, J. G., Fournier, M. J., Mason, T. L. & Tirrell, D. A. Biomolecular materials. Chem. Eng. News 72, 40–51 (1994).

    CAS  Google Scholar 

  4. 4

    Prince, J., McGrath, K., Digirolamo, C. & Kaplan, D. Construction, cloning, and expression of synthetic genes encoding spider dragline silk. Biochemistry 34, 10879–10885 (1995).

    CAS  PubMed  Google Scholar 

  5. 5

    Sun, Y., Shao, Z., Hu, P. & Tu, T. Hydrogen bonds in silk fibroin-poly(acrylonitrile-co-methyl acrylate) blends: FT-IR study. J. Polym. Sci. B 35, 1405–1414 (1997).

    CAS  Google Scholar 

  6. 6

    Kaplan, D. L., Adams, W. W., Viney, C. & Farmer, B. L. (eds) Silk Polymers: Materials Science and Biotechnology 1–370 (ACS Books, Washington, 1994).

    Google Scholar 

  7. 7

    Shear, W. A., Palmer, J. M., Coddington, J. A. & Bonamo, P. M. A Devonian spinneret: early evidence of spiders and silk use. Science 246, 479–481 (1989).

    ADS  CAS  PubMed  Google Scholar 

  8. 8

    Selden, P. A. Orb-web weaving spiders in the early Cretaceous. Nature 340, 711 (1989).

    ADS  Google Scholar 

  9. 9

    Heslot, H. Artificial fibrous proteins: a review. Biochimie 80, 19–31 (1998).

    CAS  PubMed  Google Scholar 

  10. 10

    Asakura, T. & Kaplan, D. L. Silk production and processing. Encyclop. Agric. Sci. 4, 1–11 (1994).

    Google Scholar 

  11. 11

    Kaplan, D., Adams, W. W., Farmer, B. & Viney, C. in Silk Polymers. Materials Science and Biotechnology (eds Kaplan, D., Adams, W. W., Farmer, B. & Viney, C.) 2–16 (American Chemical Society, Washington, 1994).

    Google Scholar 

  12. 12

    Seidel, A., Liivak, O. & Jelinski, L. W. Artificial spinning of spider silk. Macromolecules 31, 6733–6736 (1998).

    ADS  CAS  Google Scholar 

  13. 13

    Vollrath, F. & Knight, D. P. Apparatus and method for forming materials. PCT Patent Application PCT/GB00/04489 (1999).

  14. 14

    Kaplan, D. L. & Lombardi, S. J. The amino acid composition of major ampullate gland silk (Dragline) of Nephila clavipes (Araneae, Tetragnathidae). J. Arachnol. 18, 297–306 (1990).

    Google Scholar 

  15. 15

    Winkler, S. & Kaplan, D. L. Molecular biology of spider silk. Rev. Mol. Biotech. 74, 85–93 (2000).

    CAS  Google Scholar 

  16. 16

    Guerette, P., Ginzinger, D., Weber, B. & Gosline, J. Silk properties of determined by gland-specific expression of a spider fibroin gene family. Science 272, 112–115 (1996).

    ADS  CAS  PubMed  Google Scholar 

  17. 17

    Kovoor, J. La soie et les glandes sericigenes des arachnids. Ann. Biol. 16, 97–171 (1977).

    CAS  Google Scholar 

  18. 18

    Kovoor, J. & Zylberberg, L. Fine structural aspects of silk secretion in a spider. Tissue Cell 14, 519–530 (1982).

    CAS  PubMed  Google Scholar 

  19. 19

    Kovoor, J. in Ecophysiology of Spiders (ed. Nentwig, W.) 160–186 (Springer, Berlin/Heidelberg/ New York, 1987).

    Google Scholar 

  20. 20

    Vollrath, F., Wen Hu, X. & Knight, D. P. Silk production in a spider involves acid bath treatment. Proc. R. Soc. B 263, 817–820 (1998).

    Google Scholar 

  21. 21

    Vollrath, F. & Knight, D. P. Structure and function of the silk production pathway in the spider Nephila edulis. Int. J. Biol. Macromol. 24, 243–249 (1998).

    Google Scholar 

  22. 22

    Andersen, S. O. Amino acid composition of spider silks. Comp. Biochem. Physiol. 35, 705–711 (1970).

    CAS  Google Scholar 

  23. 23

    Work, R. W. & Young, C. T. The amino acid compositions of major and minor ampullate silks of certain orb-web-building spiders (Araneae, Araneidae). J. Arachnol. 15, 65–80 (1987).

    Google Scholar 

  24. 24

    Craig, C. L. Evolution of arthropod silks. Annu. Rev. Entomol. 42, 231–267 (1997).

    CAS  PubMed  Google Scholar 

  25. 25

    Foelix, R. Biology of Spiders (Oxford Univ. Press, Oxford, 1996).

    Google Scholar 

  26. 26

    Vollrath, F. in Biomechanics in Animal Behaviour (eds Domenici, P. & Blake, R. W.) 315–334 (Bios, Oxford, 2000).

    Google Scholar 

  27. 27

    Vollrath, F. Spider webs and silk. Sci. Am. 266, 70–76 (1992).

    CAS  Google Scholar 

  28. 28

    Madsen, B., Shao, Z. & Vollrath, F. Variability in the mechanical properties of spider silks on three levels: interspecific, intraspecific and intraindividual. Int. J. Biol. Macromol. 24, 301–306 (1999).

    CAS  PubMed  Google Scholar 

  29. 29

    Vollrath, F. Biology of spider silk. Int. J. Biol. Macromol. 24, 81–88 (1999).

    CAS  PubMed  Google Scholar 

  30. 30

    Craig, C. L., Hsu, M., Kaplan, D. & Pierce, N. E. A comparison of the composition of silk proteins produced by spiders and insects. Int. J. Biol. Macromol. 24, 109–118 (1999).

    CAS  PubMed  Google Scholar 

  31. 31

    Hayashi, C. Y. & Lewis, R. V. Evidence from flagelliform silk cDNA for the structural basis of elasticity and modular nature of spider silks. Science 287, 1477–1479 (2000).

    ADS  CAS  PubMed  Google Scholar 

  32. 32

    Hinman, M., Dong, Z., Xu, M. & Lewis, R. W. Spider silk: a mystery starting to unravel. Mater. Res. Soc. Symp. 292, 25–34 (1993).

    CAS  Google Scholar 

  33. 33

    Hayashi, C. Y., Shipley, N. H. & Lewis, R. V. Hypotheses that correlate the sequence, structure and mechanical properties of spider silk proteins. Int. J. Biol. Macromol. 24, 271–275 (1999).

    CAS  PubMed  Google Scholar 

  34. 34

    Kaplan, D. L., Prince, J. T., McGrath, K. P. & Digirolamo, C. M. Construction, cloning and expression of synthetic genes encoding spider dragline silk. Biochemistry 34, 10879–10885 (1995).

    PubMed  Google Scholar 

  35. 35

    Gosline, J. M. et al. in Silk Polymers. Materials Science and Biotechnology (eds Kaplan, D., Adams, W. W., Farmer, B. & Viney, C.) 328–341 (American Chemical Society, Washington, 1994).

    Google Scholar 

  36. 36

    Termonia, Y. Molecular modeling of spider silk elasticity. Macromolecules 27, 7378–7381 (1994).

    ADS  CAS  Google Scholar 

  37. 37

    Case, S. T. & Thornton, J. R. High molecular mass complexes of aquatic silk proteins. Int. J. Biol. Macromol. 24, 89–101 (1999).

    CAS  PubMed  Google Scholar 

  38. 38

    Gosline, J., Denny, M. & DeMont, M. Spider silk as rubber. Nature 309, 551–552 (1984).

    ADS  CAS  Google Scholar 

  39. 39

    Simmons, A., Michal, C. & Jelinski, L. Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk. Science 271, 84–87 (1996).

    ADS  CAS  PubMed  Google Scholar 

  40. 40

    Kümmerlen, J., van Beek, J., Vollrath, F. & Meier, B. Local structure in spider dragline silk investigated by two-dimensional spin-diffusion nuclear magnetic resonance. Macromolecules 29, 2920–2928 (1996).

    ADS  Google Scholar 

  41. 41

    Frische, S., Maunsbach, A. B. & Vollrath, F. Elongate cavities and skin-core structure in Nephila spider silk observed by electron microscopy. J. Microsc. 189, 64–70 (1998).

    CAS  Google Scholar 

  42. 42

    Work, R. W. Duality in major ampullate silk and precursive material from orb-web-building spiders (Araneae). Trans. Am. Microsc. Soc. 103, 113–121 (1984).

    Google Scholar 

  43. 43

    Vollrath, F., Holtet, T., Thogersen, H. & Frische, S. Structural organization of spider silk. Proc. R. Soc. Lond. B 263, 147–151 (1996).

    ADS  Google Scholar 

  44. 44

    Viney, C., Huber, A. E., Dunaway, D. L., Kerkam, K. & Case, S. T. in Silk Polymers. Materials Science and Biotechnology (eds Kaplan, D., Adams, W. W., Farmer, B. & Viney, C.) 120–136 (American Chemical Society, Washington, 1994).

    Google Scholar 

  45. 45

    Mahoney, D. V., Vezie, D. L., Eby, R. K., Adams, W. W. & Kaplan, D. in Silk Polymers. Materials Science and Biotechnology (eds Kaplan, D., Adams, W. W., Farmer, B. & Viney, C.) 196–210 (American Chemical Society, Washington, 1994).

    Google Scholar 

  46. 46

    Shao, Z., Wen Hu, X., Frische, S. & Vollrath, F. Heterogeneous morphology in Nephila edulis spider silk and its significance for mechanical properties. Polymers 40, 4709–4711 (1999).

    CAS  Google Scholar 

  47. 47

    Hijirida, D. H., Do, K. G., Michal, C., Wong, S., Zax, D. & Jelinski, L. W. C13 NMR of Nephila clavipes major ampullate silk gland. Biophys. J. 71, 3442–3447 (1996).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Akai, H. The structure and ultrastructure of the silk gland. Experientia 39, 443–449 (1983).

    Google Scholar 

  49. 49

    Knight, D. P. & Vollrath, F. Liquid crystals and flow elongation in a spider's silk production line. Proc. R. Soc. Lond. B 266, 519–523 (1999).

    Google Scholar 

  50. 50

    Weiskopf, A., Senecal, K., Vouros, P., Kaplan, D. & Mello, C. M. The carbohydrate composition of spider silk: Nephila edulis dragline. Glycobiology 6, 1703 (1996).

    Google Scholar 

  51. 51

    Vollrath, F. & Tillinghast, E. K. Glycoprotein glue beneath a spiders web's aqueous coat. Naturwissenschaften 78, 557–559 (1991).

    ADS  CAS  Google Scholar 

  52. 52

    Kerkam, K., Viney, C., Kaplan, D. & Lombardi, S. Liquid crystallinity of natural silk secretions. Nature 349, 596–598 (1991).

    ADS  CAS  Google Scholar 

  53. 53

    Willcox, P. J., Gido, S. P., Muller, W. & Kaplan, D. L. Evidence of a cholesteric liquid crystalline phase in natural silk spinning processes. Macromolecules 29, 5106–5110 (1996).

    ADS  CAS  Google Scholar 

  54. 54

    Magoshi, J., Magoshi, Y. & Nakamura, S. Crystallization, liquid crystal, and fiber formation of silk fibroin. J. Appl. Polym. Sci. 41, 187–204 (1985).

    CAS  Google Scholar 

  55. 55

    Nakamae, K., Nishino, T. & Ohkubo, H. Elastic modulus of the crystalline regions of silk fibroin. Polymer 30, 1243–1246 (1989).

    CAS  Google Scholar 

  56. 56

    Bunning, J. D. & Lydon, J. E. The cellular optical texture of the lyotropic nematic phase of the caesium pentadecafluoro-octanoate (ScPFO) water system in cylindrical tubes. Liquid Cryst. 20, 381–385 (1996).

    CAS  Google Scholar 

  57. 57

    Donald, A. M. & Windle, A. H. Liquid Crystalline Polymers 1–310 (Cambridge Univ. Press, Cambridge, 1992).

    Google Scholar 

  58. 58

    Northolt, M. G. & Sikkema, D. J. Lyotropic main chain liquid crystal polymers. Adv. Polym. Sci. 98, 115–177 (1991).

    CAS  Google Scholar 

  59. 59

    Knight, D. P., Knight, M. M. & Vollrath, F. Beta transition and stress-induced phase separation in the spinning of spider dragline silk. Int. J. Biol. Macromol. 27, 205–210 (2000).

    CAS  PubMed  Google Scholar 

  60. 60

    Riekel, C., Madsen, B., Knight, D. & Vollrath, F. Single fibre X-ray diffraction of spider silk. Biol. Macromol. (in the press).

  61. 61

    Palmer, J., Coyle, F. & Harrison, F. Structure and cyto-chemistry of the silk glands of the mygalomorph spider Antrodiaetus unicolor (Aranea, Antrodiaetidae). J. Morphol. 174, 269–274 (1982).

    CAS  PubMed  Google Scholar 

  62. 62

    Tillinghast, E., Chase, S. & Townley, M. Water extraction by the major ampullate duct during silk formation in the spider, Argiope aurantia Lucas. J. Insect Physiol. 30, 591–596 (1984).

    CAS  Google Scholar 

  63. 63

    Vollrath, F., Madsen, B. & Shao, Z. The effect of spinning conditions on the mechanical properties of a spider's dragline. Proc. R. Soc. Lond. (in the press).

  64. 64

    Shultz, J. W. The origin of the spinning apparatus in spiders. Biol. Rev. 62, 89–113 (1987).

    Google Scholar 

  65. 65

    Tillinghast, E. K., Townley, M. A., Bernstein, D. T. & Gallagher, K. S. Comparative study of orb web hygroscopicity and adhesive spiral composition in three araneid spiders. J. Exp. Zool. 259, 154–165 (1991).

    Google Scholar 

  66. 66

    Schildknecht, H., Munzelmann, P., Krauss, D. & Kuhn, C. Über die chemie der spinnwebe. Naturwissenschaften 59, 98–99 (1972).

    ADS  CAS  Google Scholar 

  67. 67

    Vollrath, F. et al. Compounds in the droplets of the orb spider's viscid spiral. Nature 345, 526–528 (1990).

    ADS  CAS  Google Scholar 

  68. 68

    Edmonds, D. & Vollrath, F. The contribution of atmospheric water vapour to the formation and efficiency of a spider's web. Proc. R. Soc. Lond. 248, 145–148 (1992).

    ADS  CAS  Google Scholar 

  69. 69

    Vollrath, F. & Edmonds, D. Modulation of the mechanical properties of spider silk coating with water. Nature 340, 305–307 (1989).

    ADS  Google Scholar 

  70. 70

    Peters, H. M. Über den Spinnapparat von Nephila madagascariensis (Radnetzspinnen Argiopidae). Z. Naturforsch. 10, 395–404 (1955).

    ADS  Google Scholar 

  71. 71

    Knight, D. P. & Vollrath, F. Changes in element composition along the spinning duct in a Nephila spider. Naturwissenschaften (in the press).

  72. 72

    Gosline, J. M., DeMont, M. E. & Denny, M. W. The structure and properties of spider silk. Endeavour 10, 31–43 (1986).

    Google Scholar 

  73. 73

    Vincent, J. F. V. Structural Materials 1–378 (Macmillan, London, 1982).

    Google Scholar 

  74. 74

    Shao, Z. & Vollrath, F. The effect of solvents on the contraction and mechanical properties of spider silk. Polymer 40, 1799–1806 (1999).

    CAS  Google Scholar 

  75. 75

    Magoshi, J., Magoshi, Y. & Nakamura, S. Physical properties and structure of silk: 10. The mechanism of fibre formation from liquid silk of silkworm Bombyx mori. Polym. Comm. 26, 309–311 (1985).

    CAS  Google Scholar 

  76. 76

    Gamo, T. Genetic variants of the Bombyx mori silkworm encoding sericin proteins of different lengths. Biochem. Genet. 20, 165–177 (1982).

    CAS  PubMed  Google Scholar 

  77. 77

    Sehnal, F. & Akai, H. Insect silk glands—their types, development and function, and effects of environmental-factors and morphogenetic hormones on them. Int. J. Insect Morphol. 19, 79–132 (1990).

    Google Scholar 

  78. 78

    Hepburn, H. R., Kurstjens, S. P. The combs of honeybees as composite-materials. Apidologie 19, 25–36 (1988).

    Google Scholar 

  79. 79

    Henderson, G., Manweiler, S. A., Lawrence, W. J., Tempelman, R. J. & Foil, L. D. The effects of Steinernema capocapsae (Weiser) application to different life stages on adult emergence of the cat flea Ctenocephalides felis (Bouche). Vet. Dermatol. 6, 159–163 (1995).

    Google Scholar 

  80. 80

    Zemlin, J. C. A Study Of The Mechanical Behavior Of Spider Silks 1–38 (Clothing and Organic Materials Laboratory Report, US Army Natick Labs, Natick, 1968).

    Google Scholar 

  81. 81

    Engster, M. S. Studies on silk secretion in the Trichoptera (F. Limnephilidae). Cell Tissue Res. 169, 77–92 (1976).

    CAS  PubMed  Google Scholar 

  82. 82

    Sivinski, J. Prey attraction by luminous larvae of the fungus gnat Orfelia fultoni. Ecol. Entomol. 7, 443–446 (1982).

    Google Scholar 

  83. 83

    Hunt, S. Amino acid composition of silk from the pseudoscorpion Neobisium maritimum (Leach): a possible link between the silk fibroins and the keratins. Comp. Biochem. Physiol. 34, 773–777 (1970).

    CAS  PubMed  Google Scholar 

  84. 84

    Winkler, S. & Kaplan, D. L. Molecular biology of spider silk. Rev. Mol. Biotech. (in the press).

  85. 85

    Mello, C. M., Senecal, K., Yeung, B., Vouros, P. & Kaplan, D. in Silk Polymers. Materials Science and Biotechnology (eds Kaplan, D., Wade, W. W., Farmer, B. & Viney, C.) 67–79 (American Chemical Society, Washington, 1994).

    Google Scholar 

  86. 86

    Candelas, G., Candelas, T., Ortiz, A. & Rodriguez, O. Translational pauses during a spider fibroin synthesis. Biochem. Biophys. Res. Commun. 116, 1033–1038 (1983).

    CAS  PubMed  Google Scholar 

  87. 87

    van Raaij, M. J., Mitraki, A., Lavigne, G. & Cusack, S. A triple beta-spiral in the adenovirus fibre shaft reveals a new structural motif for a fibrous protein. Nature 401, 935–938 (1999).

    ADS  CAS  PubMed  Google Scholar 

  88. 88

    van Beek, J. D., Kümmerlen, D., Vollrath, F. & Meier, B. H. Supercontracted spider dragline silk: a solid-state NMR study of the local structure. Int. J. Biol. Macromol. 24, 173–178 (1999).

    CAS  PubMed  Google Scholar 

  89. 89

    Yeh, W.-Y. & Young, R. J. Molecular deformation processes in aromatic high modulus polymer fibres. Polymer 40, 857–870 (1999).

    CAS  Google Scholar 

  90. 90

    Shao, Z., Young, R. J. & Vollrath, F. The effects of solvents on spider silk studied by mechanical testing and single-fibre Raman spectroscopy. Int. J. Biol. Macromol. 24, 295–300 (1999).

    CAS  PubMed  Google Scholar 

  91. 91

    Sirichaisit, S., Young, R. J. & Vollrath, F. Molecular deformation in spider dragline silk subjected to stress. Polymers 41, 1223–1227 (1999).

    Google Scholar 

  92. 92

    Riekel, C. et al. Aspects of x-ray diffraction on single spider fibers. Macromolecule 24, 179–186 (1999).

    CAS  Google Scholar 

  93. 93

    Grubb, D. T. & Jelinski, J. W. Fiber morphology of spider silk: the effects of tensile deformation. Macromolecule 30, 2860–2867 (1997).

    ADS  CAS  Google Scholar 

  94. 94

    Fung, Y. C. Biomechanics 1–586 (Springer, Heidelberg, 1981).

    MATH  Google Scholar 

  95. 95

    Askeland, D. R. The Science and Engineering of Materials (PWS, Boston, 1994).

    Google Scholar 

  96. 96

    Yoon, H. N., Charbonneau, L. F. & Calundann, G. W. Synthesis, processing and properties of thermotropic liquid-crystal polymers. Adv. Materials 4, 206–214 (1992).

    CAS  Google Scholar 

  97. 97

    Thiel, B. & Viney, C. A nonperiodic lattice model for crystals in Nephila clavipes major ampullate silk. Mater. Res. Bull. 20, 52–56 (1995).

    CAS  Google Scholar 

Download references


We thank B. Meier, R. Young, S. Case, J. Kenney, D. LaFollette, C. Craig, D. Kaplan, J. Gosline and H. Coulsey for their perceptive and helpful comments. Our research on spider silk has been funded by the Danish Science Research Council (SNF), the Science Faculty of Aarhus University, the Carlsberg Foundation, the Danish Academic Exchange Programme, the US Army (RDSG), the British Biological and Engineering Research Councils (BBSRC, EPSRC), the European Synchrotron Radiation Facility (ESRF) and the European Science Foundation (ESF). F.V. thanks the director and staff of Mpala Research Centre for their hospitality; D.P.K. thanks the Biological Imaging Centre at Southampton University for technical assistance and we both are grateful to our many collaborators for their help and support.

Author information



Corresponding author

Correspondence to Fritz Vollrath.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vollrath, F., Knight, D. Liquid crystalline spinning of spider silk. Nature 410, 541–548 (2001).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing