Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An Arabidopsis circadian clock component interacts with both CRY1 and phyB

Abstract

Most organisms, from cyanobacteria to mammals, use circadian clocks to coordinate their activities with the natural 24-h light/dark cycle. The clock proteins of Drosophila and mammals exhibit striking homology but do not show similarity with clock proteins found so far from either cyanobacteria or Neurospora1,2. Each of these organisms uses a transcriptionally regulated negative feedback loop in which the messenger RNA levels of the clock components cycle over a 24-h period. Proteins containing PAS domains are invariably found in at least one component of the characterized eukaryotic clocks1. Here we describe ADAGIO1 (ADO1), a gene of Arabidopsis thaliana that encodes a protein containing a PAS domain. We found that a loss-of-function ado1 mutant is altered in both gene expression and cotyledon movement in circadian rhythmicity. Under constant white or blue light, the ado1 mutant exhibits a longer period than that of wild-type Arabidopsis seedlings, whereas under red light cotyledon movement and stem elongation are arrhythmic. Both yeast two-hybrid and in vitro binding studies show that there is a physical interaction between ADO1 and the photoreceptors CRY1 and phyB. We propose that ADO1 is an important component of the Arabidopsis circadian system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ADO1 gene structure and T-DNA insertion mutant.
Figure 2: The periodicity of CCR2 gene expression is lengthened in the ado1 mutant.
Figure 3: Cotyledon tip movement in the ado1 mutant.
Figure 4: ADO1 interacts with both cryptochrome and phytochrome.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Dunlap, J. C. Molecular basis for circadian clocks. Cell 96, 271–290 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Lakin-Thomas, P. L. Circadian rhythms: new functions for old clock genes? Trends Genet. 16, 135–142 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Millar, A. Biological clocks in Arabidopsis thaliana. New Phytol. 141, 175–197 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Somers, D. The physiology and molecular bases of the plant circadian clock. Plant Physiol. 121, 9–19 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang, Z. & Tobin, E. Constitutive expression of the circadian clock associated 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93, 1207–1217 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Schaffer, R. et al. The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell 93, 1219–1229 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Fowler, S. et al. GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J. 18, 4679–4688 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sugano, S., Andronis, C., Ong, M. S., Green, R. M. & Tobin, E. M. The protein kinase CK2 is involved in regulation of circadian rhythms in Arabidopsis. Proc. Natl Acad. Sci. USA 96, 12362–12366 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Park, D. H. et al. Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science 1579–1582 (1999).

  10. Somers, D., Devlin, P. & Kay, S. Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science 282, 488–490 (1998).

    Article  Google Scholar 

  11. Cashmore, A. R., Jarillo, J. A., Wu, Y. J. & Liu, D. Cryptochromes: blue light receptors for plants and animals. Science 284, 760–765 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Okamura, H. et al. Photic induction of mPer1 and mPer2 in cry-deficient mice lacking a biological clock. Science 286, 2531–2534 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Griffin, E. A., Staknis, D. & Weitz, C. J. Light-independent role of CRY1 and CRY2 in the mammalian circadian clock. Science 286, 768–771 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Kume, K. et al. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98, 193–205 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Somers, D. E., Schultz, T. F., Milnamow, M. & Kay, S. A. ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell 101, 319–329 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Kiyosue, T. & Wada, M. LKP1 (LOV kelch protein 1): a factor involved in the regulation of flowering time in Arabidopsis. Plant J. 23, 807–815 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Nelson, D. C., Lasswell, J., Rogg, L. E., Cohen, M. A. & Bartel, B. FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis. Cell 101, 331–340 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Ballario, P. et al. White collar-1, a central regulator of a blue light responses in Neurospora, is a zinc finger protein. EMBO J. 15, 1650–1657 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Crosthwaite, S. K., Dunlap, J. C. & Loros, J. J. Neurospora wc-1 and wc-2: transcription, photoresponses, and the origins of circadian rhythmicity. Science 276, 763–769 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Christie, J. M. et al. NPH1: a flavoprotein with the properties of a photoreceptor for phototropism. Science 282, 1698–1701 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Jarillo, J. A., Ahmad, M. & Cashmore, A. R. NPL1 (Accession number AF053941): a second member of the NPH serine/threonine kinase family of Arabidopsis. Plant Physiol. 117, 719 (1998).

    Google Scholar 

  22. Taylor, B. L. & Zhulin, I. B. PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol. Mol. Biol. Rev. 63, 479–506 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Patton, E. E., Willems, A. R. & Tyers, M. Combinatorial control in ubiquitin-dependent proteolysis: don’t Skp the F-box hypothesis. Trends Genet. 14, 236–243 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Adams, J., Kelso, R. & Cooley, L. The kelch repeat superfamily of proteins: propellers of cell function. Trends Cell Biol. 10, 17–24 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Carpenter, C. D., Kreps, J. A. & Simon, A. E. Genes encoding glycine-rich Arabidopsis thaliana proteins with RNA-binding motifs are influenced by cold treatment and an endogenous circadian rhythm. Plant Physiol. 104, 1015–25 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dowson-Day, M. & Millar, A. Circadian dysfunction causes aberrant hypocotyl elongation patterns in Arabidopsis. Plant J. 17, 63–71 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Hicks, K. A. et al. Conditional circadian dysfunction of the Arabidopsis early-flowering 3 mutant. Science 274, 790–792 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Ballario, P. & Macino, G. White collar proteins: PASsing the light signal in Neurospora crassa. Trends Microbiol. 5, 458–462 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Ruf, T. The Lomb–Scargle periodogram in biological rhythm research: analysis of incomplete and unequally spaced time-series. Biol. Rhythm Res. 30, 178–201 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

We thank N. Bonini for comments on the manuscript. This work was supported by grants from the NIH and the DOE to A.R.C., from NSF to J.R.E., and a NATO fellowship awarded to J.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony R. Cashmore.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jarillo, J., Capel, J., Tang, RH. et al. An Arabidopsis circadian clock component interacts with both CRY1 and phyB. Nature 410, 487–490 (2001). https://doi.org/10.1038/35068589

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35068589

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing