Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Geochemical tracing of Pacific-to-Atlantic upper-mantle flow through the Drake passage


The Earth's convecting upper mantle can be viewed as comprising three main reservoirs, beneath the Pacific, Atlantic and Indian oceans. Because of the uneven global distribution and migration of ridges and subduction zones, the surface area of the Pacific reservoir is at present contracting at about 0.6 km2 yr-1, while the Atlantic and Indian reservoirs are growing at about 0.45 km2 yr-1 and 0.15 km2 yr-1, respectively1,2. Garfunkel1 and others have argued that there must accordingly be net mantle flow from the Pacific to the Atlantic and Indian reservoirs (in order to maintain mass balance), and Alvarez2 further predicted that this flow should be restricted to the few parts of the Pacific rim (here termed ‘gateways’) where there are no continental roots or subduction zones that might act as barriers to shallow mantle flow. The main Pacific gateways are, according to Alvarez2,3, the southeast Indian Ocean, the Caribbean Sea and the Drake passage. Here we report geochemical data which confirm that there has been some outflow of Pacific mantle into the Drake passage—but probably in response to regional tectonic constraints, rather than global mass-balance requirements. We also show that a mantle domain boundary, equivalent to the Australian–Antarctic discordance, must lie between the Drake passage and the east Scotia Sea.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Location and tectonic setting of the Drake passage and of the samples that we analysed.
Figure 2: Plots of 208Pb/204Pb versus 206Pb/204Pb and 144Nd/143Nd versus 206Pb/204Pb, for discriminating between Pacific and South Atlantic MORB and fingerprinting Drake passage samples.
Figure 3: Model for the mantle dynamics of the Drake passage/Scotia Sea ‘gateway’ and surrounding region.

Similar content being viewed by others


  1. Garfunkel, Z. Growth, shrinking, and long-term evolution of plates and their implications for the flow pattern in the mantle. J. Geophys. Res. 80, 4425–4432 (1975).

    Article  ADS  Google Scholar 

  2. Alvarez, W. Geological evidence for the geographical pattern of mantle return flow and the driving mechanism of plate tectonics. J. Geophys. Res. 87, 6697–6710 (1982).

    Article  ADS  Google Scholar 

  3. Alvarez, W. Geologic evidence for the plate driving mechanism: the continental undertow hypothesis and the Australian-Antarctic Discordance. Tectonics 5, 1213–1229 (1990).

    Article  ADS  Google Scholar 

  4. Barker, P. F. & Burrell, J. The opening of Drake Passage. Mar. Geol. 25, 15–34 (1977).

    Article  ADS  Google Scholar 

  5. Barker, P. F. in Backarc Basins: Tectonics and Magmatism (ed. Taylor, B.) 281–314 (Plenum, New York, 1995).

    Book  Google Scholar 

  6. Saunders, A. D., Tarney, J., Weaver, S. D. & Barker, P. F. in Antarctic Geoscience (ed. Craddock, C.) 213–222 (Univ. Wisconsin Press, Madison, 1982).

    Google Scholar 

  7. Klein, E. M., Langmuir, C. H., Zindler, A., Staudigel, H. & Hamelin, R. Isotope evidence of a mantle convection boundary at the Australian–Antarctic Discordance. Nature 333, 623–629 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Pyle, D. G., Christie, D. M., Mahoney, J. J. & Duncan, R. A. Geochemistry and geochronology of ancient southeast Indian and southwest Pacific seafloor. J. Geophys. Res. 100, 22261–22282 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Christie, D. M., West, B. P., Pyle, D. G. & Hanan, B. B. Chaotic topography, mantle flow and mantle migration in the Australian-Antarctic discordance. Nature 394, 637–644 (1998).

    Article  ADS  CAS  Google Scholar 

  10. Mahoney, J. J. et al. Isotope and trace-element characteristics of a super-fast spreading ridge – East Pacific Rise, 13-23°S. Earth Planet Sci. Lett. 121, 173–193 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Bach, W., Hegner, E., Erzinger, J. & Satir, M. Chemical and isotopic variations along the superfast spreading East Pacific Rise from 6 to 30°S. Contrib. Mineral. Petrol. 116, 365–380 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Castillo, P. R., Natland, J. H., Niu, Y. & Lonsdale, P. F. Sr, Nd and Pb isotopic variation along the Pacific-Antarctic risecrest, 53-57°S: implications for the composition and dynamics of the South Pacific upper mantle. Earth Planet Sci. Lett. 154, 109-125 (1998).

    Article  ADS  Google Scholar 

  13. Vlastélic, I. et al. Large-scale chemical and thermal division of the Pacific mantle. Nature 399, 345–350 (1999).

    Article  ADS  Google Scholar 

  14. Ferguson, E. M. & Klein, E. M. Fresh basalts from the Pacific-Antarctic Ridge extend the Pacific geochemical province. Nature 366, 330–333 (1993).

    Article  ADS  CAS  Google Scholar 

  15. Klein, E. M. & Karsten, J. L. Ocean-ridge basalts with convergent-margin geochemical affinities from the Chile Ridge. Nature 374, 52–57 (1995).

    Article  ADS  CAS  Google Scholar 

  16. Bach, W. et al. Unusually large Nb-Ta depletions in North Chile ridge basalts at 36°50′ to 38°56′: major element, trace element and isotopic data. Earth Planet. Sci. Lett. 142, 223–240 (1996).

    Article  ADS  CAS  Google Scholar 

  17. le Roex, A. P. et al. Petrology and geochemistry of basalts from the American-Antarctic Ridge, Southern Ocean: implications for the westward influence of the Bouvet mantle plume. Contrib. Mineral. Petrol. 90, 367–380 (1985).

    Article  ADS  CAS  Google Scholar 

  18. Mahoney, J. J., Le Roex, A. P., Peng, Z., Fisher, R. L. & Natland, J. H. Southwestern limits of Indian Ocean Ridge mantle and the origin of low 206Pb/204Pb mid-ocean ridge basalt: isotope systematics of the Central Southwest Indian Ridge (17°-50°E). J. Geophys. Res. 97, 19771–19790 (1992).

    Article  ADS  CAS  Google Scholar 

  19. Kurz, M. D., Le Roex, A. & Dick, H. J. B. Isotope geochemistry of the oceanic mantle near the Bouvet triple junction. Geochim. Cosmochim. Acta 62, 841–852 (1998).

    Article  ADS  CAS  Google Scholar 

  20. Douglass, J., Schilling, J.-G. & Fontignie, D. Plume-ridge interactions of the Discovery and Shona mantle plumes with the southern mid-Atlantic Ridge (40-55°S). J. Geophys. Res. 104, 2941–2962 (1999).

    Article  ADS  CAS  Google Scholar 

  21. Russo, R. M. & Silver, P. G. Trench-parallel flow beneath the Nazca plate from seismic anisotropy. Science 263, 1105–1111 (1994).

    Article  ADS  CAS  Google Scholar 

  22. Russo, R. M., Silver, P. G., Franke, M., Ambeh, W. B. & James, D. E. Shear-wave splitting in northeast Venezuala, Trinidad and the eastern Caribbean. Phys. Earth Planet. Inter. 95, 251–275 (1996).

    Article  ADS  Google Scholar 

  23. Helffrich, G., Wiens, D., Barrientos, S. & Vera, E. Mantle flow around South America through the Drake Passage: teleseismic shear wave splitting results from the SEPA. J. Conf. Abs. 4, 844 (1999).

    Google Scholar 

  24. Phipps Morgan, J., Morgan, W. J., Zhang, Y.-S. & Smith, W. H. F. Observational hints for a plume-fed sub-oceanic asthenosphere and its role in mantle convection. J. Geophys. Res. 100, 12753–12767 (1995).

    Article  ADS  Google Scholar 

  25. Dvorkin, J., Nur, A., Mavko, G. & Ben-Avraham, Z. Narrow subducting slabs and the origin of backarc basalts. Tectonophysics 227, 63–79 (1993).

    Article  ADS  Google Scholar 

  26. Livermore, R., Cunningham, A., Vanneste, L. & Larter, R. Subduction influence on magma supply at the East Scotia Ridge. Earth Planet. Sci. Lett. 150, 261–275 (1997).

    Article  ADS  CAS  Google Scholar 

  27. Sleep, N. H. Hotspots and mantle plumes: some phenomenology. J. Geophys. Res. 95, 6715–6736 (1990).

    Article  ADS  Google Scholar 

  28. Phipps Morgan, J. & Morgan, W. J. Two-stage melting and the geochemical evolution of the mantle: a recipe for mantle plum-pudding. Earth Planet. Sci. Lett. 170, 215–239 (1999).

    Article  ADS  CAS  Google Scholar 

  29. Leat, P. T., Livermore, R. A., Millar, I. L. & Pearce, J. A. Magma supply in back-arc spreading centre segment E2, East Scotia Ridge. J. Petrol. 41, 845–866 (2000).

    Article  ADS  CAS  Google Scholar 

  30. Woodhouse, J. H. & Dziewonski, A. M. Mapping the upper mantle: three-dimensional modeling of Earth structure by inversion of seismic waveforms. J. Geophys. Res. 89, 5953–5986 (1984).

    Article  ADS  Google Scholar 

Download references


We thank C. Ottley for analytical assistance; A. Saunders for providing some of the Scotia Sea samples; J. Mahoney, J. Phipps Morgan, G. Helffrich, G. Milne and M. Bott for discussions; and D. Christie for comments on the manuscript. This work was supported by the NERC.

Author information

Authors and Affiliations


Corresponding author

Correspondence to J. A. Pearce.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pearce, J., Leat, P., Barker, P. et al. Geochemical tracing of Pacific-to-Atlantic upper-mantle flow through the Drake passage. Nature 410, 457–461 (2001).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing