Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Discovery of radio emission from the brown dwarf LP944-20

Abstract

Brown dwarfs are not massive enough to sustain thermonuclear fusion of hydrogen at their centres, but are distinguished from gas-giant planets by their ability to burn deuterium1. Brown dwarfs older than 10 Myr are expected to possess short-lived magnetic fields2 and to emit radio and X-rays only very weakly from their coronae. An X-ray flare was recently detected3 on the brown dwarf LP944-20, whereas previous searches4,5,6,7 for optical activity (and one X-ray search1) yielded negative results. Here we report the discovery of quiescent and flaring radio emission from LP944-20, with luminosities several orders of magnitude larger than predicted by the empirical relation8,9 between the X-ray and radio luminosities that has been found for many types of stars. Interpreting the radio data within the context of synchrotron emission, we show that LP944-20 has an unusually weak magnetic field in comparison to active M-dwarf stars10,11, which might explain the previous null optical4,5,6,7 and X-ray1 results, as well as the strength of the radio emissions compared to those at X-ray wavelengths.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Light curves for the flaring radio emission from LP944-20.

References

  1. Neuhäuser, R. et al. Search for X-ray emission from bona-fide and candidate brown dwarfs. Astron. Astrophys. 343, 883–893 (1999).

    ADS  Google Scholar 

  2. Durney, B. R., De Young, D. S. & Roxburgh, I. W. On the generation of the large-scale and turbulent magnetic fields in solar-type stars. Sol. Phys. 145, 207–225 (1993).

    ADS  Article  Google Scholar 

  3. Rutledge, R. E., Basri, G., Martin, E. L. & Bildsten, L. Chandra detection of an X-ray flare from the brown dwarf LP944-20. Astrophys. J. 538, L141–L144 (2000).

    ADS  Article  Google Scholar 

  4. Tinney, C. G. The intermediate-age brown dwarf LP944-20. Mon. Not. R. Astron. Soc. 296, L42–L44 (1998).

    ADS  CAS  Article  Google Scholar 

  5. Tinney, C. G. & Reid, I. N. High-resolution spectra of very low-mass stars. Mon. Not. R. Astron. Soc. 301, 1031–1048 (1998).

    ADS  CAS  Article  Google Scholar 

  6. Tinney, C. G. & Tolley, A. J. Searching for weather in brown dwarfs. Mon. Not. R. Astron. Soc. 304, 119–126 (1999).

    ADS  Article  Google Scholar 

  7. Kirkpatrick, J. D., Henry, T. J. & Irwin, M. J. Ultra-cool M dwarfs discovered by QSO surveys. I: the APM objects. Astron. J. 113, 1421–1428 (1997).

    ADS  Article  Google Scholar 

  8. Guedel, M. & Benz, A. O. X-ray/microwave relation of different types of active stars. Astrophys. J. 405, L63–L66 (1993).

    ADS  Article  Google Scholar 

  9. Benz, A. O. & Guedel, M. X-ray/microwave ratio of flares and coronae. Astron. Astrophys. 285, 621–630 (1994).

    ADS  Google Scholar 

  10. Saar, S. H. & Linsky, J. L. The photospheric magnetic field of the dM3.5e flare star AD Leonis. Astrophys. J. 299, L47–L50 (1985).

    ADS  CAS  Article  Google Scholar 

  11. Haisch, B., Strong, K. T. & Rodono, M. Flares on the sun and other stars. Annu. Rev. Astron. Astrophys. 29, 275–324 (1991).

    ADS  CAS  Article  Google Scholar 

  12. Krishnamurthi, A., Leto, G. & Linsky, J. L. A search for radio emission at the bottom of the main sequence and beyond. Astron. J. 118, 1369–1372 (1999).

    ADS  Article  Google Scholar 

  13. Schaefer, B. E., King, J. R. & Deliyannis, C. P. Superflares on ordinary solar-type stars. Astrophys. J. 529, 1026–1030 (2000).

    ADS  Article  Google Scholar 

  14. Rubenstein, E. P. & Schaefer, B. E. Are superflares on solar analogues caused by extrasolar planets? Astrophys. J. 529, 1031–1033 (2000).

    ADS  Article  Google Scholar 

  15. Dulk, G. A. in LNP Vol. 291: Cool Stars, Stellar Systems and the Sun (eds Linsky, J. L. & Stencel, R. E.) 72–82 (Berlin, Springer, 1987).

    Book  Google Scholar 

  16. Rybicki, G. B. & Lightman, A. P. Radiative Processes in Astrophysics (Wiley-Interscience, New York, 1979).

    Google Scholar 

  17. Bruggmann, G. & Magun, A. Temporal and spectral characteristics of the circular polarization of solar microwave bursts. Astron. Astrophys. 239, 347–355 (1990).

    ADS  Google Scholar 

  18. Bastian, T. S., Benz, A. O. & Gary, D. E. Radio emission from solar flares. Annu. Rev. Astron. Astrophys. 36, 131–188 (1998).

    ADS  Article  Google Scholar 

  19. Dulk, G. A. & Marsh, K. A. Simplified expressions for the gyrosynchrotron radiation from mildly relativistic, nonthermal and thermal electrons. Astrophys. J. 259, 350–358 (1982).

    ADS  CAS  Article  Google Scholar 

  20. Burbidge, G. R. & Burbidge, E. M. The sources of radio emission in NGC 5128 and NGC 1316. Astrophys. J. 125, 1–8 (1957).

    ADS  Article  Google Scholar 

  21. Readhead, A. C. S. Equipartition brightness temperature and the inverse Compton catastrophe. Astrophys. J. 426, 51–59 (1994).

    ADS  Article  Google Scholar 

  22. Scott, M. A. & Readhead, A. C. S. The low-frequency structure of powerful radio sources and limits to departures from equipartition. Mon. Not. R. Astron. Soc. 180, 539–550 (1977).

    ADS  Article  Google Scholar 

  23. Smith, E. J. et al. Jupiter's magnetic field, magnetosphere, and interaction with the solar wind–Pioneer 11. Science 188, 451–455 (1975).

    ADS  CAS  Article  Google Scholar 

  24. Fleming, T. A., Liebert, J., Gioia, I. M. & Maccacaro, T. M dwarfs from the Einstein extended medium sensitivity survey. Astrophys. J. 331, 958–973 (1988).

    ADS  CAS  Article  Google Scholar 

  25. Giampapa, M. S. et al. The coronae of low-mass dwarf stars. Astrophys. J. 463, 707–725 (1996).

    ADS  Article  Google Scholar 

  26. Fleming, T. A., Giampapa, M. S., Schmitt, J. H. M. M. & Bookbinder, J. A. Stellar coronae at the end of the main sequence–A ROSAT survey of the late M dwarfs. Astrophys. J. 410, 387–392 (1993).

    ADS  Article  Google Scholar 

  27. Sturrock, P. A. Chromosopheric magnetic reconnection and its possible relationship to coronal heating. Astrophys. J. 521, 451–459 (1999).

    ADS  CAS  Article  Google Scholar 

  28. Fomalont, E. Astronomical Image Processing System/AIPS. NRAO Newsl. 3, 3 (1981).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank B. Clark for the allocation of ad hoc VLA time. We also thank S. R. Kulkarni, D. E. Gary and R. Sari for helpful discussions. The initial observation of LP944-20 was undertaken as part of the National Radio Astronomy Observatory (NRAO) VLA Summer Program funded by the National Science Foundation (NSF). The National Radio Astronomy Observatory is a facility of the NSF operated under cooperative agreement by Associated Universities, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Berger.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Berger, E., Ball, S., Becker, K. et al. Discovery of radio emission from the brown dwarf LP944-20. Nature 410, 338–340 (2001). https://doi.org/10.1038/35066514

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35066514

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing