Key Points
-
The innate immune response fights infections from the moment of first contact and is the fundamental defensive weapon of multicellular organisms.
-
Studies in Drosophila and in mammals are central to the appreciation that innate immunity is phylogenetically ancient, and that defensive strategies have been conserved at the molecular level.
-
The Toll family of receptors, of which Drosophila Toll is the prototype, is a paralogous system for innate immune sensing.
-
Recent genome sequencing projects have allowed the analysis of 88 Toll sequences from Drosophila, mammals and plants, providing new insights into the evolution of Toll receptors.
-
The function of Toll receptors differs between mammals and Drosophila, raising intriguing questions about the mechanisms of Toll signal reception and the relationship between inflammation and development.
-
A conserved evolutionary strategy of innate immunity involves the use of antimicrobial peptides to protect epithelial surfaces and fluid compartments.
-
There is mounting evidence of similarities between the mechanisms of immunity and apoptosis.
-
Many human diseases result from the failure of processes in the innate immunity response, either caused by a primary defect or by medical treatment.
-
The study of various organisms provides a greater understanding of immunity and indicates therapeutic strategies for dealing with infection and disease in humans.
Abstract
The immune system provides protection from a wide range of pathogens. One component of immunity, the phylogenetically ancient innate immune response, fights infections from the moment of first contact and is the fundamental defensive weapon of multicellular organisms. The Toll family of receptors has a crucial role in immune defence. Studies in fruitflies and in mammals reveal that the defensive strategies of invertebrates and vertebrates are highly conserved at the molecular level, which raises the exciting prospects of an increased understanding of innate immunity.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Migrators within migrators: exploring transposable element dynamics in the monarch butterfly, Danaus plexippus
Mobile DNA Open Access 16 February 2022
-
Evolution of Toll, Spatzle and MyD88 in insects: the problem of the Diptera bias
BMC Genomics Open Access 21 July 2021
-
The Role of Extracellular DNA and Histones in Ischaemia-Reperfusion Injury of the Myocardium
Cardiovascular Drugs and Therapy Open Access 15 February 2020
Access options
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout


References
Ehrlich, P. The Croonian lecture: on immunity. Proc. R. Soc. Lond. B66, 424–448 (1900).
Metchnikoff, E. Immunity in the Infectious Diseases (Macmillan, New York, 1905).
Janeway, C. J. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harbor Symp. Quant. Biol. 54, 1– 13 (1989).
Ehlers, M. R. CR3: a general purpose adhesion-recognition receptor essential for innate immunity. Microb. Infect. 2, 289– 294 (2000).
Pearson, A. M. Scavenger receptors in innate immunity. Curr. Opin. Immunol. 8, 20–28 (1996).
Franc, N. C., Heitzler, P., Ezekowitz, R. A. & White, K. Requirement for croquemort in phagocytosis of apoptotic cells in Drosophila . Science 284, 1991– 1994 (1999).
Kang, D., Liu, G., Lundstrom, A., Gelius, E. & Steiner, H. A peptidoglycan recognition protein in innate immunity conserved from insects to humans. Proc. Natl Acad. Sci. USA 95, 10078–10082 (1998).
Lee, W. J., Lee, J. D., Kravchenko, V. V., Ulevitch, R. J. & Brey, P. T. Purification and molecular cloning of an inducible Gram-negative bacteria-binding protein from the silkworm, Bombyx mori. Proc. Natl Acad. Sci. USA 93, 7888–7893 (1996).
Dimopoulos, G., Richman, A., Muller, H. M. & Kafatos, F. C. Molecular immune responses of the mosquito Anopheles gambiae to bacteria and malaria parasites. Proc. Natl Acad. Sci. USA 94 , 11508–11513 (1997).
Werner, T. et al. A family of peptidoglycan recognition proteins in the fruit fly Drosophila melanogaster. Proc. Natl Acad. Sci. USA 97, 13772–13777 (2000).
Kim, Y. S. et al. Gram-negative bacteria-binding protein, a pattern recognition receptor for lipopolysaccharide and β-1,3-glucan that mediates the signaling for the induction of innate immune genes in Drosophila melanogaster cells. J. Biol. Chem. 275, 32721– 32727 (2000).
Kawabata, S. & Iwanaga, S. Role of lectins in the innate immunity of horseshoe crab. Dev. Comp. Immunol. 23, 391–400 (1999).
Khush, R. S. & Lemaitre, B. Genes that fight infection: what the Drosophila genome says about animal immunity. Trends Genet. 16, 442–449 ( 2000).
Sun, S. C., Asling, B. & Faye, I. Organization and expression of the immunoresponsive lysozyme gene in the giant silk moth, Hyalophora cecropia. J. Biol. Chem. 266, 6644–6649 ( 1991).
Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M. & Hoffmann, J. A. The dorsoventral regulatory gene cassette spatzle /Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973– 983 (1996).Crucial demonstration of the immune function of Toll and of the regulatory gene cassette that establishes dorsoventral polarity in Drosophila.
Lemaitre, B. et al. A recessive mutation, immune deficiency (imd), defines two distinct control pathways in the Drosophila host defence. Proc. Natl Acad. Sci. USA 92, 9465– 9469 (1995).This paper showed for the first time that immune signalling in Drosophila proceeds by more than one pathway.
Ip, Y. T. et al. Dif, a dorsal-related gene that mediates an immune response in Drosophila. Cell 75, 753– 763 (1993).
Dushay, M. S., Asling, B. & Hultmark, D. Origins of immunity: Relish, a compound Rel -like gene in the antibacterial defense of Drosophila. Proc. Natl Acad. Sci. USA 93, 10343– 10347 (1996).
Han, Z. S. & Ip, Y. T. Interaction and specificity of Rel-related proteins in regulating Drosophila immunity gene expression. J. Biol. Chem. 274, 21355–21361 (1999).
Rutschmann, S. et al. The Rel protein DIF mediates the antifungal but not the antibacterial host defense in Drosophila. Immunity 12, 569–580 (2000).
Rutschmann, S. et al. Role of Drosophila IKK in a Toll-independent antibacterial immune response. Nature Immunol. 1, 342– 347 (2000).
Silverman, N. et al. A Drosophila IκB kinase complex required for relish cleavage and antibacterial immunity. Genes Dev. 14, 2461–2471 (2000).
Tzou, P. et al. Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity 13, 737–748 (2000).
Levashina, E. A. et al. Constitutive activation of toll-mediated antifungal defense in serpin-deficient Drosophila. Science 285, 1917–1919 (1999). This paper shows that Spätzle is the Toll ligand in the immune response, and highlights the issue of immune recognition by pattern receptors and/or other proteins.
Williams, M. J., Rodriguez, A., Kimbrell, D. A. & Eldon, E. D. The 18-wheeler mutation reveals complex antibacterial gene regulation in Drosophila host defense. EMBO J. 16, 6120–6130 (1997).
Tauszig, S., Jouanguy, E., Hoffmann, J. A. & Imler, J. L. Toll-related receptors and the control of antimicrobial peptide expression in Drosophila. Proc. Natl Acad. Sci. USA 97, 10520–10525 (2000).
Ferrandon, D. et al. A drosomycin-GFP reporter transgene reveals a local immune response in Drosophila that is not dependent on the Toll pathway. EMBO J. 17, 1217–1227 ( 1998).
Gay, N. J. & Keith, F. J. Drosophila Toll and IL-1 receptor. Nature 351, 355– 356 (1991).
Medzhitov, R., Preston-Hurlburt, P. & Janeway, C. A. Jr A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394–397 ( 1997).
Kirschning, C. J., Wesche, H., Merrill Ayres, T. & Rothe, M. Human toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide . J. Exp. Med. 188, 2091– 2097 (1998).
Yang, R. B. et al. Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signalling. Nature 395, 284– 288 (1998).
Rietschel, E. T. & Westphal, O. in Endotoxin in Health and Disease (eds Brade, H., Opal, S. M. & Vogel, S. N.) 1–30 (Marcel Dekker, Inc., Basel, 1999).
Ulevitch, R. J., Tobias, P. S. & Mathison, J. C. Regulation of the host response to bacterial lipopolysaccharides . Fed. Proc. 43, 2755–2759 (1984).
Michalek, S. M., Moore, R. N., McGhee, J. R., Rosenstreich, D. L. & Mergenhagen, S. E. The primary role of lymphoreticular cells in the mediation of host responses to bacterial endotoxin. J. Infect. Dis. 141, 55–63 (1980).
Galanos, C. & Freudenberg, M. A. Mechanisms of endotoxin shock and endotoxin hypersensitivity. Immunobiology 187, 346–356 (1993).
Beutler, B., Milsark, I. W. & Cerami, A. C. Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science 229, 869–871 (1985).
Watson, J., Riblet, R. & Taylor, B. A. The response of recombinant inbred strains of mice to bacterial lipopolysaccharides. J. Immunol. 118, 2088–2093 (1977).
Watson, J., Kelly, K., Largen, M. & Taylor, B. A. The genetic mapping of a defective LPS response gene in C3H/HeJ mice. J. Immunol. 120, 422–424 ( 1978).
O'Brien, A. D. et al. Genetic control of susceptibility to Salmonella typhimurium in mice: role of the LPS gene. J. Immunol. 124 , 20–24 (1980).
Poltorak, A. et al. Genetic and physical mapping of the Lps locus: identification of the toll-4 receptor as a candidate gene in the critical region. Blood Cells Mol. Dis. 24, 340–355 (1998); erratum 25, 78 (1999 ).
Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998). Positional cloning of the Lipopolysaccharide ( Lps ) gene in mice revealed that Tlr4 is the long-sought signalling chain of the mammalian endotoxin receptor. This permitted the first assignment of a specific function to a Toll-like receptor in mammals.
Du, X., Poltorak, A., Silva, M. & Beutler, B. Analysis of Tlr4-mediated LPS signal transduction in macrophages by mutational modification of the receptor . Blood Cells Mol. Dis. 25, 328– 338 (1999); erratum 26, 9 (2000).
Poltorak, A., Smirnova, I., Clisch, R. & Beutler, B. Limits of a deletion spanning Tlr4 in C57BL/10ScCr mice. J. Endotoxin Res. 6, 51–56 (2000).
Hoshino, K. et al. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J. Immunol. 162, 3749– 3752 (1999).
Poltorak, A., Ricciardi-Castagnoli, P., Citterio, S. & Beutler, B. Physical contact between lipopolysaccharide and toll-like receptor 4 revealed by genetic complementation. Proc. Natl Acad. Sci. USA 97, 2163–2167 (2000).
Lien, E. et al. Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. J. Clin. Invest. 105, 497–504 (2000).
Takeuchi, O. et al. Differential roles of TLR2 and TLR4 in recognition of Gram-negative and Gram-positive bacterial cell wall components. Immunity 11, 443–451 (1999). Provides definitive proof that TLR2 does not transduce the LPS signal, but has a different specificity. This paper contributed to the view that Toll-like receptors recognize a wide range of pathogens through unique specificities.
Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 ( 2000).The pro-inflammatory effect of bacterial DNA, with its content of unmethylated CpG dinucleotides, was shown to result from responses initiated by TLR9.
Whitham, S. et al. The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell 78, 1101–1115 ( 1994); erratum 81, 466 (1995). The finding of a plant resistance gene that has similarity to Toll and to the IL-1 receptor, supports the generality of Toll and its homologues in defence.
Meyers, B. C. et al. Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J. 20, 317–332 ( 1999).
Belvin, M. P. & Anderson, K. V. A conserved signaling pathway: the Drosophila Toll-dorsal pathway. Annu. Rev. Cell Dev. Biol. 12, 393–416 ( 1996).
Anderson, K. V. Toll signaling pathways in the innate immune response. Curr. Opin. Immunol. 12, 13–19 ( 2000).
Samakovlis, C., Kylsten, P., Kimbrell, D. A., Engstrom, A. & Hultmark, D. The andropin gene and its product, a male-specific antibacterial peptide in Drosophila melanogaster . EMBO J. 10, 163–169 (1991).
Meister, M., Lemaitre, B. & Hoffmann, J. A. Antimicrobial peptide defense in Drosophila. BioEssays 19, 1019–1026 (1997).
Haq, S., Kubo, T., Kurata, S., Kobayashi, A. & Natori, S. Purification, characterization, and cDNA cloning of a galactose-specific C-type lectin from Drosophila melanogaster. J. Biol. Chem. 271, 20213–20218 (1996).
Ganz, T. & Lehrer, R. I. Antibiotic peptides from higher eukaryotes: biology and applications. Mol. Med. Today 5, 292–297 (1999).
Huttner, K. M. & Bevins, C. L. Antimicrobial peptides as mediators of epithelial host defense. Pediatr. Res. 45, 785–794 ( 1999).
Diamond, G., Kaiser, V., Rhodes, J., Russell, J. P. & Bevins, C. L. Transcriptional regulation of β-defensin gene expression in tracheal epithelial cells. Infect. Immun. 68, 113–119 ( 2000).
Hancock, R. E. & Scott, M. G. The role of antimicrobial peptides in animal defenses. Proc. Natl Acad. Sci. USA 97, 8856–8861 (2000).
Conlan, J. W. & North, R. J. Neutrophil-mediated dissolution of infected host cells as a defense strategy against a facultative intracellular bacterium. J. Exp. Med. 174, 741– 744 (1991).
Harty, J. T. & Bevan, M. J. Specific immunity to Listeria monocytogenes in the absence of IFNγ. Immunity 3, 109–117 (1995).
Rizki, T. M. in Genetics and Biology of Drosophila (eds Ashburner, M. A. & Wright, T. R. F.) 561–601 (Academic, New York, 1978).
Shrestha, R. & Gateff, E. Ultrastructure and cytochemistry of the cell types in the larval hematopoetic organs and hemolymph of Drosophila melanogaster. Dev. Growth Differ. 24, 65–82 (1982).
Dearolf, C. R. JAKs and STATs in invertebrate model organisms. Cell Mol. Life Sci. 55, 1578–1584 ( 1999).
Lagueux, M., Perrodou, E., Levashina, E. A., Capovilla, M. & Hoffmann, J. A. Constitutive expression of a complement-like protein in toll and JAK gain-of-function mutants of Drosophila. Proc. Natl Acad. Sci. USA 97, 11427–11432 (2000).
Watson, K. L., Konrad, K. D., Woods, D. F. & Bryant, P. J. Drosophila homolog of the human S6 ribosomal protein is required for tumor suppression in the hematopoietic system. Proc. Natl Acad. Sci. USA 89, 11302–11306 ( 1992).
Lemaitre, B. et al. Functional analysis and regulation of nuclear import of dorsal during the immune response in Drosophila. EMBO J. 14, 536–545 (1995).
Gregory, C. D. CD14-dependent clearance of apoptotic cells: relevance to the immune system . Curr. Opin. Immunol. 12, 27– 34 (2000).
Soderhall, K. & Cerenius, L. Role of the prophenoloxidase-activating system in invertebrate immunity. Curr. Opin. Immunol. 10, 23–28 (1998).
Kanost, M. R. Serine proteinase inhibitors in arthropod immunity. Dev. Comp. Immunol. 23, 291–301 ( 1999).
Matsushita, M., Endo, Y., Nonaka, M. & Fujita, T. Complement-related serine proteases in tunicates and vertebrates. Curr. Opin. Immunol. 10, 29–35 ( 1998).
Armstrong, P. B. The contribution of proteinase inhibitors to immune defense. Trends Immunol. 22, 47–52 ( 2000).
Arbour, N. C. et al. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nature Genet. 25, 187– 191 (2000).
Goldman, M. J. et al. Human β-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell 88 , 553–560 (1997).
Hoffmann, J. A., Kafatos, F. C., Janeway, C. A. & Ezekowitz, R. A. Phylogenetic perspectives in innate immunity. Science 284, 1313–1318 (1999).
Rittig, M. G. & Bogdan, C. Leishmania–host-cell interaction: complexities and alternative views. Parasitol. Today 16, 292–297 ( 2000).
Dimopoulos, G. et al. Anopheles gambiae pilot gene discovery project: identification of mosquito innate immunity genes from expressed sequence tags generated from immune-competent cell lines. Proc. Natl Acad. Sci. USA 97, 6619–6624 (2000).
Watson, K. L., Johnson, T. K. & Denell, R. E. Lethal (1) aberrant immune response mutations leading to melanotic tumor formation in Drosophila melanogaster. Dev. Genet. 12, 173–187 (1991).
Rodriguez, A. et al. Identification of immune system and response genes, and novel mutations causing melanotic tumor formation in Drosophila melanogaster . Genetics 143, 929– 940 (1996).
Gateff, E. & Mechler, B. M. Tumor-suppressor genes of Drosophila melanogaster. Crit. Rev. Oncogenes 1 , 221–245 (1989).
Braun, A., Lemaitre, B., Lanot, R., Zachary, D. & Meister, M. Drosophila immunity: analysis of larval hemocytes by P-element-mediated enhancer trap. Genetics 147, 623–634 (1997).
Wu, L. P. & Anderson, K. V. Regulated nuclear import of Rel proteins in the Drosophila immune response. Nature 392, 93–97 (1998).
Bentley, A., MacLennan, B., Calvo, J. & Dearolf, C. R. Targeted recovery of mutations in Drosophila. Genetics 156, 1169–1173 (2000).
Rubin, G. M. et al. Comparative genomics of the eukaryotes. Science 287, 2204–2215 ( 2000).The comparison of the Drosophila genome sequence with the human genome sequence made in this paper and in reference 13 reveals new information and possibilities related to immunity.
Nattermann, J., Du, X., Wei, Y., Shevchenko, D. & Beutler, B. Endotoxin-mimetic effect of antibodies against Toll-like receptor 4. J. Endotoxin Res. 6, 257– 264 (2000).
Burns, K. et al. Tollip, a new component of the IL-1RI pathway, links IRAK to the IL-1 receptor. Nature Cell Biol. 2, 346–351 (2000).
Kawai, T., Adachi, O., Ogawa, T., Takeda, K. & Akira, S. Unresponsiveness of MyD88-deficient mice to endotoxin . Immunity 11, 115–122 (1999).
Kuhns, D. B., Long Priel, D. A. & Gallin, J. I. Endotoxin and IL-1 hyporesponsiveness in a patient with recurrent bacterial infections. J. Immunol. 158 , 3959–3964 (1997).
Matzinger, P. & Fuchs, E. J. Beyond self and non-self: immunity is a conversation, not a war. J. Natl Inst. Hlth Res. 8, 35–39 (1996).
Chen, P., Rodriguez, A., Erskine, R., Thach, T. & Abrams, J. M. Dredd, a novel effector of the apoptosis activators reaper, grim, and hid in Drosophila. Dev. Biol. 201, 202–216 (1998).
Elrod-Erickson, M., Mishra, S. & Schneider, D. Interactions between the cellular and humoral immune responses in Drosophila. Curr. Biol. 10, 781–784 (2000).
Leulier, F., Rodriguez, A., Khush, R. S., Abrams, J. M. & Lemaitre, B. The Drosophila caspase Dredd is required to resist Gram-negative bacterial infection. EMBO Rep. 353–358 (2000). With reference 91 this paper shows that a caspase is involved in Drosophila immunity, and advances the connections between immunity and apoptosis.
Hu, S. & Yang, X. dFADD, a novel death domain-containing adapter protein for the Drosophila caspase DREDD. J. Biol. Chem. 275, 30761–30764 ( 2000).
Rodriguez, A. et al. Dark is a Drosophila homologue of Apaf-1/CED-4 and functions in an evolutionarily conserved death pathway. Nature Cell Biol. 1, 272–279 ( 1999).
Carton, Y. & Nappi, A. J. Drosophila cellular immunity against parasitoids. Parasitol. Today 13, 218–227 (1997).
Sparrow, J. C. in Genetics and Biology of Drosophila (eds Ashburner, M. & Wright, T. R. F.) 277–313 (Academic, New York, 1978).
Basset, A. et al. The phytopathogenic bacteria Erwinia carotovora infects Drosophila and activates an immune response. Proc. Natl Acad. Sci. USA 97, 3376–3381 ( 2000).
Lebestky, T., Chang, T., Hartenstein, V. & Banerjee, U. Specification of Drosophila hematopoietic lineage by conserved transcription factors. Science 288, 146– 149 (2000).
Hart, K. & Wilcox, M. A Drosophila gene encoding an epithelial membrane protein with homology to CD36/LIMP II. J. Mol. Biol. 234, 249–253 (1993).
Gough, P. J. & Gordon, S. The role of scavenger receptors in the innate immune system. Microb. Infect. 2, 305–311 (2000).
Hatada, E. N., Krappmann, D. & Scheidereit, C. NF-κB and the innate immune response. Curr. Opin. Immunol. 12, 52–58 (2000).
Nicolas, E., Reichhart, J. M., Hoffmann, J. A. & Lemaitre, B. In vivo regulation of the IκB homologue cactus during the immune response of Drosophila. J. Biol. Chem. 273, 10463–10469 (1998).
Mizuguchi, K., Parker, J. S., Blundell, T. L. & Gay, N. J. Getting knotted: a model for the structure and activation of Spätzle . Trends Biochem. Sci. 23, 239– 242 (1998); erratum 23, 361 (1998).
Krawczak, M., Wacey, A. & Cooper, D. N. Molecular reconstruction and homology modelling of the catalytic domain of the common ancestor of the haemostatic vitamin-K-dependent serine proteinases. Hum. Genet. 98, 351– 370 (1996).
Konrad, K. D., Goralski, T. J., Mahowald, A. P. & Marsh, J. L. The gastrulation defective gene of Drosophila melanogaster is a member of the serine protease superfamily. Proc. Natl Acad. Sci. USA 95, 6819–6824 (1998).
Cao, Z., Henzel, W. J. & Gao, X. IRAK: a kinase associated with the interleukin-1 receptor . Science 271, 1128–1131 (1996).
Kwon, E. J. et al. Transcriptional regulation of the Drosophila raf proto-oncogene by Drosophila STAT during development and in immune response. J. Biol. Chem. 275, 19824–19830 (2000).
Sluss, H. K., Han, Z., Barrett, T., Davis, R. J. & Ip, Y. T. A JNK signal transduction pathway that mediates morphogenesis and an immune response in Drosophila. Genes Dev. 10, 2745–2758 (1996).
Han, Z. S. et al. A conserved p38 mitogen-activated protein kinase pathway regulates Drosophila immunity gene expression. Mol. Cell. Biol. 18, 3527–3539 (1998).
Mendoza, H. L. & Faye, I. Physiological aspects of the immunoglobulin superfamily in invertebrates. Dev. Comp. Immunol. 23, 359–374 ( 1999).
D'Souza, J., Cheah, P. Y., Gros, P., Chia, W. & Rodrigues, V. Functional complementation of the malvolio mutation in the taste pathway of Drosophila melanogaster by the human natural resistance-associated macrophage protein 1 (Nramp-1). J. Exp. Biol. 202, 1909–1915 ( 1999).
Yoshiga, T. et al. Drosophila melanogaster transferrin. Cloning, deduced protein sequence, expression during the life cycle, gene localization and up-regulation on bacterial infection. Eur. J. Biochem. 260, 414–420 (1999).
Wilson, C. L. et al. Regulation of intestinal α-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286, 113–117 (1999).
Bernal, A. & Kimbrell, D. A. Drosophila Thor participates in host immune defense and connects a translational regulator with innate immunity. Proc. Natl Acad. Sci. USA 97, 6019–6024 (2000).
Nappi, A. J. & Ottaviani, E. Cytotoxicity and cytotoxic molecules in invertebrates. BioEssays 22, 469– 480 (2000).
Acknowledgements
D.A.K.'s lab is supported by the National Institutes of Health. B.B. is an investigator of the Howard Hughes Medical Institute.
Author information
Authors and Affiliations
Related links
Related links
DATABASE LINKS
FURTHER INFORMATION
ENCYCLOPEDIA OF LIFE SCIENCES
Immune mechanisms against extracellular pathogens
Glossary
- CLONAL EXPANSION
-
The proliferation of a lymphocyte clone bearing an antibody or T-cell receptor that is specific for a particular antigen.
- CLONAL ELIMINATION
-
The removal, generally in the thymus, of a T cell bearing a receptor that recognizes molecules within the host. Such cells, if not eliminated, would otherwise cause autoimmune disease.
- GRANULOCYTES
-
White blood cells, encompassing neutrophils, eosinophils and basophils, which are dedicated to the ingestion and destruction of microorganisms (bacteria, for example).
- CYTOKINES
-
A wide array of proteins, functionally similar to classical endocrine hormones, that mediate signalling between cells. Cytokines have a vital role in communication between different cells of the immune system. Although usually secreted, they might occasionally be anchored to cell surfaces. They often act at close range, but also circulate and exert their effects at a distance.
- HAEMOCOEL
-
The haemocoel is the blood space of arthropods and molluscs. It is a very large, blood-filled cavity, which occupies most or all of the body.
- HUMORAL IMMUNITY
-
B-cell-mediated immunity in mammals that fights bacteria and viruses in body fluids with antibodies that circulate in blood plasma and lymph, fluids formerly called humours. In insects, humoral immunity refers to the immune response that produces antimicrobial peptides, particularly at high concentrations in the haemolymph (blood).
- MACROPHAGES
-
Phagocytic cells that respond to non-self material (for example, bacteria, protozoa or tumour cells) to release substances that stimulate other cells of the immune system. They are also involved in antigen presentation and are derived from monocytes, which circulate in the blood.
- GRAM-NEGATIVE
-
Bacteria that fail to take up Gram stains during histological preparation for identification: typically bacteria present in the bowel rather than the throat and respiratory tissues. Examples of infections caused by this class of bacteria include the plague, tularemia, cholera and typhoid fever.
- REL ONCOGENE
-
The Rel oncogene was originally found in an avian reticuloendotheliosis virus; it is the prototype of a family of transcription factors that includes NF-κB, c-rel, Relish, Dif and Dorsal.
- GRAM-POSITIVE
-
Bacteria that take up Gram stains during histological preparation for identification: typically bacteria present in the throat and respiratory tissues. Infections caused by this class of bacteria include anthrax and listeriosis.
- MAXIMUM PARSIMONY
-
A mathematical method for determining the evolutionary relationship between proteins, wherein account is taken of the minimum number of mutations that are required to effect transition from one member of the family to another.
- BILATERIA
-
Members of the animal kingdom that possess bilateral symmetry — the property of having two similar sides, with definite upper and lower surfaces, and anterior and posterior ends.
- PROTHROMBIN
-
(clotting factor II). One of the 13 chemical components of the blood that create the clotting mechanism. Prothrombin is a blood plasma protein and is synthesized in the liver.
- COMPLEMENT
-
Group of blood proteins that circulate and reside in the tissues, the actions of which 'complement' the work of antibodies. They 'burst' bacteria by creating pores in the bacteria's membrane. Complement proteins can also cover the surfaces of bacteria and act as flags for phagocytes. Proteolytic cleavage fragments of complement proteins act as local signals for inflammation.
- CASPASE
-
Enzymes that are responsible for the breakdown of the cell during apoptosis by cleaving numerous cellular proteins. They are synthesized as inactive procaspases that are later activated by proteolytic cleavage into active caspases.
- PUPARIUM
-
A case formed by the hardening of the last larval skin, in which the pupa is formed.
- IATROGENIC
-
Disease caused by the physician in the course of treating the patient.
Rights and permissions
About this article
Cite this article
Kimbrell, D., Beutler, B. The evolution and genetics of innate immunity. Nat Rev Genet 2, 256–267 (2001). https://doi.org/10.1038/35066006
Issue Date:
DOI: https://doi.org/10.1038/35066006
This article is cited by
-
Histological and immunocytochemical study on the detoxification of cadmium chloride in Anadara notabilis (Röding 1798) (Bivalvia, Arcidae)
International Journal of Environmental Science and Technology (2023)
-
Migrators within migrators: exploring transposable element dynamics in the monarch butterfly, Danaus plexippus
Mobile DNA (2022)
-
Tolerance and resistance of microbial biofilms
Nature Reviews Microbiology (2022)
-
Evolution of Toll, Spatzle and MyD88 in insects: the problem of the Diptera bias
BMC Genomics (2021)
-
The immune system of jawless vertebrates: insights into the prototype of the adaptive immune system
Immunogenetics (2021)