Abstract
Glasses are disordered materials that lack the periodicity of crystals but behave mechanically like solids. The most common way of making a glass is by cooling a viscous liquid fast enough to avoid crystallization. Although this route to the vitreous state — supercooling — has been known for millennia, the molecular processes by which liquids acquire amorphous rigidity upon cooling are not fully understood. Here we discuss current theoretical knowledge of the manner in which intermolecular forces give rise to complex behaviour in supercooled liquids and glasses. An intriguing aspect of this behaviour is the apparent connection between dynamics and thermodynamics. The multidimensional potential energy surface as a function of particle coordinates (the energy landscape) offers a convenient viewpoint for the analysis and interpretation of supercooling and glass-formation phenomena. That much of this analysis is at present largely qualitative reflects the fact that precise computations of how viscous liquids sample their landscape have become possible only recently.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Emerging exotic compositional order on approaching low-temperature equilibrium glasses
Nature Communications Open Access 07 August 2023
-
Finding defects in glasses through machine learning
Nature Communications Open Access 15 July 2023
-
High-pressure studies in the supercooled and glassy state of the strongly associated active pharmaceutical ingredient—ticagrelor
Scientific Reports Open Access 01 June 2023
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout








References
Angell, C. A. Formation of glasses from liquids and biopolymers. Science 267, 1924–1935 (1995).
Blanshard, J. M. V. & Lillford, P. (eds) The Glassy State in Foods (Nottingham Univ. Press, Nottingham, 1993).
Crowe, J. H., Carpenter, J. F. & Crowe, L. M. The role of vitrification in anhydrobiosis. Annu. Rev. Physiol. 60, 73–103 (1998).
Debenedetti, P. G., Stillinger, F. H., Truskett, T. M. & Lewis, C. P. Theory of supercooled liquids and glasses: energy landscape and statistical geometry perspectives. Adv. Chem. Eng. (in the press).
Greer, A. L. Metallic glasses. Science 267, 1947–1953 (1995).
Jenniskens, P. & Blake, D. F. Structural transitions in amorphous water ice and astrophysical implications. Science 265, 753–756 (1994).
Anderson, P. W. Through a glass lightly. Science 267, 1615 (1995).
Angell, C. A., Ngai, K. L., McKenna, G. B., McMillan, P. F. & Martin, S. W. Relaxation in glassforming liquids and amorphous solids. J. Appl. Phys. 88, 3113–3157 (2000).
Debenedetti, P. G. Metastable Liquids. Concepts and Principles (Princeton Univ. Press, Princeton, 1996).
Turnbull, D. Under what conditions can a glass be formed? Contemp. Phys. 10, 473–488 (1969).
Angell, C. A. Structural instability and relaxation in liquid and glassy phases near the fragile liquid limit. J. Non-Cryst. Solids 102, 205–221 (1988).
Moynihan, C. T. et al. in The Glass Transition and the Nature of the Glassy State (eds Goldstein, M. & Simha, R.) Ann. NY Acad. Sci. 279, 15–36 (1976).
Brüning, R. & Samwer, K. Glass transition on long time scales. Phys. Rev. B 46, 318–322 (1992).
Ediger, M. D., Angell, C. A. & Nagel, S. R. Supercooled liquids and glasses. J. Phys. Chem. 100, 13200–13212 (1996).
Vogel, H. Das temperatur-abhängigkeitsgesetz der viskosität von flüssigkeiten. Phys. Zeit. 22, 645–646 (1921).
Tammann, G. & Hesse, W. Die abhängigkeit der viskosität von der temperatur bei unterkühlten flüssigkeiten. Z. Anorg. Allg. Chem. 156, 245–257 (1926).
Fulcher, G. S. Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc. 8, 339 (1925).
Laughlin, W. T. & Uhlmann, D. R. Viscous flow in simple organic liquids. J. Phys. Chem. 76, 2317–2325 (1972).
Angell, C. A. in Relaxations in Complex Systems (eds Ngai, K. & Wright, G. B.) 1 (Natl Technol. Inform. Ser., US Dept. of Commerce, Springfield, VA, 1985).
Angell, C. A. Relaxation in liquids, polymers and plastic crystals—strong/fragile patterns and problems. J. Non-Cryst. Solids 131–133, 13–31 (1991).
Green, J. L., Ito, K., Xu, K. & Angell, C. A. Fragility in liquids and polymers: new, simple quantifications and interpretations. J. Phys. Chem. B 103, 3991–3996 (1999).
Novikov, V. N., Rössler, E., Malinovsky, V. K. & Surovstev, N. V. Strong and fragile liquids in percolation approach to the glass transition. Europhys. Lett. 35, 289–294 (1996).
Fujimori, H. & Oguni, M. Correlation index (Tgα−Tgβ)/Tgα and activation energy ratio Δɛaα/Δɛaβ as parameters characterizing the structure of liquid and glass. Solid State Commun. 94, 157–162 (1995).
Kivelson, D., Tarjus, G., Zhao, X. & Kivelson, S. A. Fitting of viscosity: distinguishing the temperature dependencies predicted by various models of supercooled liquids. Phys. Rev. E 53, 751–758 (1996).
Cummins, H. Z. Comment on “Fitting of viscosity: distinguishing the temperature dependencies predicted by various models of supercooled liquids”. Phys. Rev. E 54, 5870–5872 (1996).
Kohlrausch, R. Theorie des elektrischen rückstandes in der leidener flasche. Ann. Phys. Chem. (Leipzig) 91, 179–214 (1874).
Williams, G. & Watts, D. C. Non-symmetrical dielectric relaxation behavior arising from a simple empirical decay function. Trans. Faraday Soc. 66, 80–85 (1970).
Richert, R. & Blumen, A. in Disorder Effects on Relaxational Processes (eds Richert, R. & Blumen, A.) 1–7 (Springer, Berlin, 1994).
Cicerone, M. T. & Ediger, M. D. Relaxation of spatially heterogeneous dynamic domains in supercooled ortho-terphenyl. J. Chem. Phys. 103, 5684–5692 (1995).
Cicerone, M. T. & Ediger, M. D. Enhanced translation of probe molecules in supercooled o-terphenyl: signature of spatially heterogeneous dynamics? J. Chem. Phys. 104, 7210–7218 (1996).
Mel'cuk, A. I., Ramos, R. A., Gould, H., Klein, W. & Mountain, R. D. Long-lived structures in fragile glass-forming liquids. Phys. Rev. Lett. 75, 2522–2525 (1995).
Hurley, M. M. & Harrowell, P. Non-gaussian behavior and the dynamical complexity of particle motion in a dense two-dimensional liquid. J. Chem. Phys. 105, 10521–10526 (1996).
Perera, D. N. & Harrowell, P. Measuring diffusion in supercooled liquids: the effect of kinetic inhomogeneities. J. Chem. Phys. 104, 2369–2375 (1996).
Perera, D. N. & Harrowell, P. Consequence of kinetic inhomogeneities in glasses. Phys. Rev. E 54, 1652–1662 (1996).
Donati, C., Glotzer, S. C., Poole, P. H., Kob, W. & Plimpton, S. J. Spatial correlations of mobility and immobility in a glass-forming Lennard-Jones liquid. Phys. Rev. E 60, 3107–3119 (1999).
Böhmer, R., Hinze, G., Diezemann, G., Geil, B. & Sillescu, H. Dynamic heterogeneity on supercooled ortho-terphenyl studied by multidimensional deuteron NMR. Europhys. Lett. 36, 55–60 (1996).
Wang, C.-Y. & Ediger, M. D. How long do regions of different dynamics persist in supercooled o-terphenyl? J. Phys. Chem. B 103, 4177–4184 (1999).
Vidal Russell, E. & Israeloff, N. E. Direct observation of molecular cooperativity near the glass transition. Nature 408, 695–698 (2000).
Ediger, M. D. Spatially heterogeneous dynamics in supercooled liquids. Annu. Rev. Phys. Chem. 51, 99–128 (2000).
Fujara, F., Geil, B., Sillescu, H. H. & Fleischer, G. Translational and rotational diffusion in supercooled orthoterphenyl close to the glass transition. Z. Phys. B Cond. Matt. 88, 195–204 (1992).
Johari, G. P. Intrinsic mobility of molecular glasses. J. Chem. Phys. 58, 1766–1770 (1973).
Johari, G. P. & Goldstein, M. Viscous liquids and the glass transition. II. Secondary relaxations in glasses of rigid molecules. J. Chem. Phys. 53, 2372–2388 (1970).
Rössler, E., Warschewske, U., Eiermann, P., Sokolov, A. P. & Quitmann, D. Indications for a change of transport mechanism in supercooled liquids and the dynamics close and below Tg . J. Non-Cryst. Solids 172–174, 113–125 (1994).
Stillinger, F. H. A topographic view of supercooled liquids and glass formation. Science 267, 1935–1939 (1995).
Kauzmann, W. The nature of the glassy state and the behavior of liquids at low temperatures. Chem. Rev. 43, 219–256 (1948).
Simon, F. Über den zustand der unterkühlten flüssigkeiten und glässer. Z. Anorg. Allg. Chem. 203, 219–227 (1931).
Wolynes, P. G. Aperiodic crystals: biology, chemistry and physics in a fugue with stretto. AIP Conf. Proc. 180, 39–65 (1988).
Wolynes, P. G. Entropy crises in glasses and random heteropolymers. J. Res. Natl Inst. Standards Technol. 102, 187–194 (1997).
Angell, C. A. Landscapes with megabasins: polyamorphism in liquids and biopolymers and the role of nucleation in folding and folding diseases. Physica D 107, 122–142 (1997).
Gibbs, J. H. & DiMarzio, E. A. Nature of the glass transition and the glassy state. J. Chem. Phys. 28, 373–383 (1958).
Adam, G. & Gibbs, J. H. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43, 139–146 (1965).
Richert, R. & Angell, C. A. Dynamics of glass-forming liquids. V. On the link between molecular dynamics and configurational entropy. J. Chem. Phys. 108, 9016–9026 (1998).
Williams, M. L., Landel, R. F. & Ferry, J. D. The temperature dependence of the relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77, 3701–3707 (1955).
Ito, K., Moynihan, C. T. & Angell, C. A. Thermodynamic determination of fragility in liquids and a fragile-to-strong liquid transition in water. Nature 398, 492–495 (1999).
Goldstein, M. Viscous liquids and the glass transition: a potential energy barrier picture. J. Chem. Phys. 51, 3728–3739 (1969).
Frauenfelder, H., Sligar, S. G. & Wolynes, P. G. The energy landscapes and motions of proteins. Science 254, 1598–1603 (1991).
Nienhaus, G. U., Müller, J. D., McMahon, B. H. & Frauenfelder, H. Exploring the conformational energy landscape of proteins. Physica D 107, 297–311 (1997).
Abkevich, V. I., Gutin, A. M. & Shakhnovich, E. I. Free energy landscape for protein folding kinetics: intermediates, traps, and multiple pathways in theory and lattice model simulations. J. Chem. Phys. 101, 6052–6062 (1994).
Saven, J. G., Wang, J. & Wolynes, P. G. Kinetics of protein folding: the dynamics of globally connected rough energy landscapes with biases. J. Chem. Phys. 101, 11037–11043 (1994).
Wang, J., Onuchic, J. & Wolynes, P. Statistics of kinetic pathways on biased rough energy landscapes with applications to protein folding. Phys. Rev. Lett. 76, 4861–4864 (1996).
Plotkin, S. S., Wang, J. & Wolynes, P. G. Correlated energy landscape model for finite, random heteropolymers. Phys. Rev. E 53, 6271–6296 (1996).
Becker, O. M. & Karplus, M. The topology of multidimensional potential energy surfaces: theory and application to peptide structure and kinetics. J. Chem. Phys. 106, 1495–1517 (1997).
Dill, K. A. & Chan, H. S. From Levinthal to pathways and funnels. Nature Struct. Biol. 4, 10–19 (1997).
Klepeis, J. L., Floudas, C. A., Morikis, D. & Lambris, J. D. Predicting peptide structure using NMR data and deterministic global optimization. J. Comp. Chem. 20, 1354–1370 (1999).
Lacks, D. J. Localized mechanical instabilities and structural transformations in silica glass under high pressure. Phys. Rev. Lett. 80, 5385–5388 (1998).
Malandro, D. L. & Lacks, D. J. Volume dependence of potential energy landscapes in glasses. J. Chem. Phys. 107, 5804–5810 (1997).
Malandro, D. L. & Lacks, D. J. Relationships of shear-induced changes in the potential energy landscape to the mechanical properties of ductile glasses. J. Chem. Phys. 110, 4593–4601 (1999).
Malandro, D. L. & Lacks, D. J. Molecular-level instabilities and enhanced self-diffusion in flowing liquids. Phys. Rev. Lett. 81, 5576–5579 (1998).
Schulz, M. Energy landscape, minimum points, and non-Arrhenius behavior of supercooled liquids. Phys. Rev. B 57, 11319–11333 (1998).
Sastry, S., Debenedetti, P. G. & Stillinger, F. H. Signatures of distinct dynamical regimes in the energy landscape of a glass-forming liquid. Nature 393, 554–557 (1998).
Keyes, T. Dependence of supercooled liquid dynamics on elevation in the energy landscape. Phys. Rev. E 59, 3207–3211 (1999).
Debenedetti, P. G., Stillinger, F. H., Truskett, T. M. & Roberts, C. J. The equation of state of an energy landscape. J. Phys. Chem. B 103, 7390–7397 (1999).
Jonsson, H. & Andersen, H. C. Icosahedral ordering in the Lennard-Jones crystal and glass. Phys. Rev. Lett. 60, 2295–2298 (1988).
Angelani, L., Di Leonardo, R., Ruocco, G., Scala, A. & Sciortino, F. Saddles in the energy landscape probed by supercooled liquids. Phys. Rev. Lett. 85, 5356–5359 (2000).
Stillinger, F. H., Debenedetti, P. G. & Sastry, S. Resolving vibrational and structural contributions to isothermal compressibility. J. Chem. Phys. 109, 3983–3988 (1998).
Stillinger, F. H. & Debenedetti, P. G. Distinguishing vibrational and structural equilibration contributions to thermal expansion. J. Phys. Chem. B 103, 4052–4059 (1999).
Sciortino, F., Kob, W. & Tartaglia, P. Inherent structure entropy of supercooled liquids. Phys. Rev. Lett. 83, 3214–3217 (1999).
Büchner, S. & Heuer, A. Potential energy landscape of a model glass former: thermodynamics, anharmonicities, and finite size effects. Phys. Rev. E 60, 6507–6518 (1999).
Scala, A., Starr, F. W., La Nave, E., Sciortino, F. & Stanley, H. E. Configurational entropy and diffusivity in supercooled water. Nature 406, 166–169 (2000).
Prielmeier, F. X., Lang, E. W., Speedy, R. J. & Lüdemann, H.-D. Diffusion in supercooled water to 300 Mpa. Phys. Rev. Lett. 59, 1128–1131 (1987).
Mackenzie, J. D. Viscosity-temperature relationship for network liquids. J. Am. Ceram. Soc. 44, 598–601 (1961).
Greet, R. J. & Turnbull, D. Glass transition in o-terphenyl. J. Chem. Phys. 46, 1243–1251 (1967).
Stillinger, F. H. & Hodgdon, J. A. Translation-rotation paradox for diffusion in fragile glass-forming liquids. Phys. Rev. E 50, 2064–2068 (1994).
Tarjus, G. & Kivelson, D. Breakdown of the Stokes-Einstein relation in supercooled liquids. J. Chem. Phys. 103, 3071–3073 (1995).
Liu, C. Z.-W. & Openheim, I. Enhanced diffusion upon approaching the kinetic glass transition. Phys. Rev. E 53, 799–802 (1996).
Geszti, T. Pre-vitrification by viscosity feedback. J. Phys. C 16, 5805–5814 (1983).
Bengtzelius, U., Götze, W. & Sjölander, A. Dynamics of supercooled liquids and the glass transition. J. Phys. C 17, 5915–5934 (1984).
Götze, W. & Sjögren, L. Relaxation processes in supercooled liquids. Rep. Prog. Phys. 55, 241–376 (1992).
Götze, W. & Sjögren, L. The mode coupling theory of structural relaxations. Transp. Theory Stat. Phys. 24, 801–853 (1995).
Götze, W. Recent tests of the mode-coupling theory for glassy dynamics. J. Phys. Cond. Matt. 11, A1–A45 (1999).
Kob, W. Computer simulations of supercooled liquids and glasses. J. Phys. Cond. Matt. 11, R85–R115 (1999).
Kob, W. & Andersen, H. C. Testing mode-coupling theory for a supercooled binary Lennard-Jones mixture: the van Hove correlation function. Phys. Rev. E 51, 4626–4641 (1995).
Kivelson, D., Kivelson, S. A., Zhao, X., Nussinov, Z. & Tarjus, G. A thermodynamic theory of supercooled liquids. Physica A 219, 27–38 (1995).
Kivelson, D. & Tarjus, G. SuperArrhenius character of supercooled glass-forming liquids. J. Non-Cryst. Solids 235–237, 86–100 (1998).
Kivelson, D. & Tarjus, G. The Kauzmann paradox interpreted via the theory of frustration-limited domains. J. Chem. Phys. 109, 5481–5486 (1998).
Sastry, S. The relationship between fragility, configurational entropy and the potential energy landscape of glass-forming liquids. Nature 409, 164–167 (2001).
Speedy, R. J. Relations between a liquid and its glasses. J. Phys. Chem. B 103, 4060–4065 (1999).
Keyes, T. Instantaneous normal mode approach to liquid state dynamics. J. Phys. Chem. A 101, 2921–2930 (1997).
Kirkpatrick, T. R. & Wolynes, P. G. Stable and metastable states in mean-field Potts and structural glasses. Phys. Rev. B 36, 8552–8564 (1987).
Kirkpatrick, T. R., Thirumalai, D. & Wolynes, P. G. Scaling concepts for the dynamics of viscous liquids near an ideal glassy state. Phys. Rev. A 40, 1045–1054 (1989).
Mézard, M. & Parisi, G. Thermodynamics of glasses: a first principles computation. Phys. Rev. Lett. 82, 747–750 (1999).
Berendsen, H. J., Grigera, J. R. & Stroatsma, T. P. The missing term in effective pair potentials. J. Phys. Chem. 91, 6269–6271 (1987).
Stillinger, F. H. Supercooled liquids, glass transitions, and the Kauzmann paradox. J. Chem. Phys. 88, 7818–7825 (1988).
Santen, L. & Krauth, W. Absence of thermodynamic phase transition in a model glass former. Nature 405, 550–551 (2000).
Wilks, J. The Properties of Liquid and Solid Helium (Clarendon, Oxford, 1967).
Rastogi, S., Höhne, G. W. H. & Keller, A. Unusual pressure-induced phase behavior in crystalline Poly(4-methylpentene-1): calorimetric and spectroscopic results and further implications. Macromolecules 32, 8897–8909 (1999).
Greer, A. L. Too hot to melt. Nature 404, 134–135 (2000).
Stillinger, F. H. Exponential multiplicity of inherent structures. Phys. Rev. E 59, 48–51 (1999).
Stillinger, F. H. Enumeration of isobaric inherent structures for the fragile glass former o-terphenyl. J. Phys. Chem. B 102, 2807–2810 (1998).
Acknowledgements
P.G.D.'s work is supported by the US Department of Energy.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Debenedetti, P., Stillinger, F. Supercooled liquids and the glass transition. Nature 410, 259–267 (2001). https://doi.org/10.1038/35065704
Issue Date:
DOI: https://doi.org/10.1038/35065704
This article is cited by
-
Analysis of the glass effect and Trommsdorff effect during bulk polymerization of methyl methacrylate, ethyl methacrylate, and butyl methacrylate
Polymer Journal (2023)
-
Emergence of equilibrated liquid regions within the glass
Nature Physics (2023)
-
Finding defects in glasses through machine learning
Nature Communications (2023)
-
A generative deep learning framework for inverse design of compositionally complex bulk metallic glasses
npj Computational Materials (2023)
-
Signature of collective elastic glass physics in surface-induced long-range tails in dynamical gradients
Nature Physics (2023)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.