Abstract
Crackling noise arises when a system responds to changing external conditions through discrete, impulsive events spanning a broad range of sizes. A wide variety of physical systems exhibiting crackling noise have been studied, from earthquakes on faults to paper crumpling. Because these systems exhibit regular behaviour over a huge range of sizes, their behaviour is likely to be independent of microscopic and macroscopic details, and progress can be made by the use of simple models. The fact that these models and real systems can share the same behaviour on many scales is called universality. We illustrate these ideas by using results for our model of crackling noise in magnets, explaining the use of the renormalization group and scaling collapses, and we highlight some continuing challenges in this still-evolving field.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Statistical laws of stick-slip friction at mesoscale
Nature Communications Open Access 05 October 2023
-
Crackling noise microscopy
Nature Communications Open Access 16 August 2023
-
Parabolic avalanche scaling in the synchronization of cortical cell assemblies
Nature Communications Open Access 03 May 2023
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout









References
Kadanoff, L. P. Scaling laws for Ising models near Tc . Physics 2, 263–272 (1966).
Wilson, K. G. Problems in physics with many scales of length. Sci. Am. 241, 140–157 (1979).
Pfeuty, P. & Toulouse, G. Introduction to the Renormalization Group and to Critical Phenomena (Wiley, London, 1977).
Yeomans, J. M. Statistical Mechanics of Phase Transitions (Oxford Univ. Press, Oxford, 1992).
Fisher, M. E. Renormalization group theory: its basis and formulation in statistical physics. Rev. Mod. Phys. 70, 653–681 (1998).
Martin, P. C., Siggia, E. D. & Rose, H. A. Statistical dynamics of classical systems. Phys. Rev. A 8, 423–437 (1973).
De Dominicis, C. Dynamics as a substitute for replicas in systems with quenched random impurities. Phys. Rev. B 18, 4913–4919 (1978).
Sompolinsky, H. & Zippelius, A. Relaxational dynamics of the Edwards-Anderson model and the mean-field theory of spin-glasses. Phys. Rev. B 25, 6860–6875 (1982).
Zippelius, A. Critical-dynamics of spin-glasses. Phys. Rev. B 29, 2717–2723 (1984).
Gutenberg, B. & Richter, C. F. Seismicity of the Earth and Associated Phenomena (Princeton Univ. Press, Princeton, 1954).
Houle, P. A. & Sethna, J. P. Acoustic emission from crumpling paper. Phys. Rev. E 54, 278–283 (1996).
Kramer, E. M. & Lobkovsky, A. E. Universal power law in the noise from a crumpled elastic sheet. Phys. Rev. E 53, 1465–1469 (1996).
Glanz, J. No hope of silencing the phantom crinklers of the opera. New York Times 1 June 2000, A14 (2000).
Sethna, J. P. Hysteresis and avalanches 〈http://www.lassp.cornell.edu/sethna/hysteresis/hysteresis.html〉 (1996).
Sethna, J. P. et al. Hysteresis and hierarchies: dynamics of disorder-driven first-order phase transformations. Phys. Rev. Lett. 70, 3347–3351 (1993).
Burridge, R. & Knopoff, L. Model and theoretical seismicity. Bull. Seismol. Soc. Am. 57, 3411–3471 (1967).
Rice, J. R. & Ruina, A. L. Stability of steady frictional slipping. J. Appl. Mech. 50, 343 (1983).
Carlson, J. M. & Langer, J. S. Mechanical model of an earthquake fault. Phys. Rev. A 40, 6470–6484 (1989).
Bak, P. & Tang, C. Earthquakes as a self-organized critical phenomenon. J. Geophys. Res. 94, 15635–15637 (1989).
Chen, K., Bak, P. & Obukhov, S. P. Self-organized criticality in a crack-propagation model of earthquakes. Phys. Rev. A 43, 625–630 (1991).
Olami, Z., Feder, H. J. S. & Christensen, K. Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes. Phys. Rev. Lett. 68, 1244–1247 (1992).
Miltenberger, P., Sornette, D. & Vanette, C. Fault self-organization and optimal random paths selected by critical spatiotemporal dynamics of earthquakes. Phys. Rev. Lett. 71, 3604–3607 (1993).
Crowie, P. A., Vanette, C. & Sornette, D. Statistical physics model for the spatiotemporal evolution of faults. J. Geophys. Res. Solid Earth 98, 21809–21821 (1993).
Carlson, J. M., Langer, J. S. & Shaw, B. E. Dynamics of earthquake faults. Rev. Mod. Phys. 66, 657–670 (1994).
Myers, C. R., Shaw, B. E. & Langer, J. S. Slip complexity in a crustal-plane model of an earthquake fault. Phys. Rev. Lett. 77, 972–975 (1996).
Shaw, B. E. & Rice, J. R. Existence of continuum complexity in the elastodynamics of repeated fault ruptures. J. Geophys. Res. 105, 23791–23810 (2000).
Ben-Zion, Y. & Rice, J. R. Slip patterns and earthquake populations along different classes of faults in elastic solids. J. Geophys. Res. 100, 12959–12983 (1995).
Fisher, D. S., Dahmen, K., Ramanathan, S. & Ben-Zion, Y. Statistics of earthquakes in simple models of heterogeneous faults. Phys. Rev. Lett. 78, 4885–4888 (1997).
Fisher, D. S. Threshold behavior of charge-density waves pinned by impurities. Phys. Rev. Lett. 50, 1486–1489 (1983).
Fisher, D. S. Sliding charge-density waves as a dynamic critical phenomenon. Phys. Rev. B 31, 1396–1427 (1985).
Littlewood, P. B. Sliding charge-density waves: a numerical study. Phys. Rev. B 33, 6694–6708 (1986).
Narayan, O. & Fisher, D. S. Critical behavior of sliding charge-density waves in 4-ɛ dimensions. Phys. Rev. B 46, 11520–11549 (1992).
Middleton, A. A. & Fisher, D. S. Critical behavior of charge-density waves below threshold: numerical and scaling analysis. Phys. Rev. B 47, 3530–3552 (1993).
Myers, C. R. & Sethna, J. P. Collective dynamics in a model of sliding charge-density waves. I. Critical behavior. Phys. Rev. B 47, 11171–11192 (1993).
Thorne, R. E. Charge-density-wave conductors. Phys. Today 49, 42–47 (1996).
Bak, P., Tang, C. & Wiesenfeld K. Self-organized criticality: an explanation for 1/f noise. Phys. Rev. Lett. 59, 381–384 (1987).
Bak, P., Tang, C. & Wiesenfeld K. Self-organized criticality. Phys. Rev. A 38, 364–374 (1988).
deGennes, P. G. Superconductivity of Metals and Alloys p. 83 (Benjamin, New York, 1966).
Feynman, R. P., Leighton, R. B. & Sands, M. The Feynman Lectures on Physics Vol. II Sect. 37–3 (Addison Wesley, Reading, MA, 1963–1965).
Jaeger, H. M., Liu, C. & Nagel, S. R. Relaxation at the angle of repose. Phys. Rev. Lett. 62, 40–43 (1989).
Nagel, S. R. Instabilities in a sandpile. Rev. Mod. Phys. 64, 321–325 (1992).
Tewari, S. et al. Statistics of shear-induced rearrangements in a two-dimensional model foam. Phys. Rev. E 60, 4385–4396 (1999).
Solé, R. V. & Manrubia, S. C. Extinction and self-organized criticality in a model of large-scale evolution. Phys. Rev. E 54, R42–R45 (1996).
Newman, M. E. J. Self-organized criticality, evolution, and the fossil extinction record. Proc. R. Soc. Lond. B 263, 1605–1610 (1996).
Newman, M. E. J. & Palmer, R. G. Models of extinction: a review. Preprint adap-org/9908002 at 〈http://xxx.lanl.gov〉 (1999).
Cieplak, M. & Robbins, M. O. Dynamical transition in quasistatic fluid invasion in porous media. Phys. Rev. Lett. 60, 2042–2045 (1988).
Koiller, B. & Robbins, M. O. Morphology transitions in three-dimensional domain growth with Gaussian random fields. Phys. Rev. B 62, 5771–5778 (2000).
Nattermann, T., Stepanow, S., Tang, L. H. & Leschhorn N. Dynamics of interface depinning in a disordered medium. J. Phys. II (Paris) 2, 1483–1488 (1992).
Narayan, O. & Fisher, D. S. Threshold critical dynamics of driven interfaces in random media. Phys. Rev. B 48, 7030–7042 (1993).
Leschhorn, H., Nattermann, T., Stepanow, S. & Tang, L.-H. Driven interface depinning in a disordered medium. Ann. Phys. (Leipzig) 6, 1–34 (1997).
Roters, L., Hucht, A., Lubeck, S., Nowak, U. & Usadel, K. D. Depinning transition and thermal fluctuations in the random-field Ising model. Phys. Rev. E 60, 5202–5207 (1999).
Field, S., Witt, J., Nori, F. & Ling, X. Superconducting vortex avalanches. Phys. Rev. Lett. 74, 1206–1209 (1995).
Ertaş, D. & Kardar, M. Anisotropic scaling in depinning of a flux line. Phys. Rev. Lett. 73, 1703–1706 (1994).
Ertaş, D. & Kardar, M. Anisotropic scaling in threshold critical dynamics of driven directed lines. Phys. Rev. B 53, 3520–3542 (1996).
Lilly, M. P., Wootters, A. H. & Hallock, R. B. Spatially extended avalanches in a hysteretic capillary condensation system: superfluid He-4 in nuclepore. Phys. Rev. Lett. 77, 4222–4225 (1996).
Guyer, R. A. & McCall, K. R. Capillary condensation, invasion percolation, hysteresis, and discrete memory. Phys. Rev. B 54, 18–21 (1996).
Ortín, J. et al. Experiments and models of avalanches in martensites. J. Phys. IV (Paris) 5, 209–214 (1995).
Bouchaud, J. P. Power-laws in economy and finance: some ideas from physics. (Proc. Santa Fe Conf. Beyond Efficiency.) J. Quant. Finance (in the press); also available as preprint cond-mat/0008103 at 〈http://xxx.lanl.gov〉.
Bak, P., Paczuski, M. & Shubik, M. Price variations in a stock market with many agents. Physica A 246, 430–453 (1997).
Lu, E. T., Hamilton, R. J., McTiernan, J. M. & Bromond, K. R. Solar flares and avalanches in driven dissipative systems. Astrophys. J. 412, 841–852 (1993).
Carreras, B. A., Newman, D. E., Dobson, I. & Poole, A. B. Initial evidence for self-organized criticality in electrical power system blackouts. In Proc. 33rd Hawaii Int. Conf. Syst. Sci. (ed. Sprague, R. H. Jr) (IEEE Comp. Soc., Los Alamitos, CA, 2000).
Sachtjen, M. L., Carreras, B. A. & Lynch, V. E. Disturbances in a power transmission system. Phys. Rev. E 61, 4877–4882 (2000).
Carlson, J. M. & Doyle, J. Highly optimized tolerance: a mechanism for power laws in designed systems. Phys. Rev. E 60, 1412–1427 (1999).
Carlson, J. M. & Doyle, J. Highly optimized tolerance: robustness and design in complex systems. Phys. Rev. Lett. 84, 2529–2532 (2000).
Newman, M. The power of design. Nature 405, 412–413 (2000).
Galam, S. Rational group decision making: a random field Ising model at T=0. Physica A 238, 66–80 (1997).
Petri, A., Paparo, G., Vespignani, A., Alippi, A. & Costantini, M. Experimental evidence for critical dynamics in microfracturing processes. Phys. Rev. Lett. 73, 3423–3426 (1994).
Garcimartín, A., Guarino, A., Bellon, L. & Ciliberto, S. Statistical properties of fracture precursors. Phys. Rev. Lett. 79, 3202–3205 (1997).
Curtin, W. A. & Scher, H. Analytic model for scaling of breakdown. Phys. Rev. Lett. 67, 2457–2460 (1991).
Herrman, H. J. & Roux, S. (eds) Statistical Models for the Fracture of Disordered Media (North Holland, Amsterdam, 1990).
Chakrabarti, B. K. & Benguigui, L. G. Statistical Physics of Fracture and Breakdown in Disordered Systems (Clarendon, Oxford, 1997).
Zapperi, S., Ray, P., Stanley, H. E. & Vespignani, A. First-order transition in the breakdown of disordered media. Phys. Rev. Lett. 78, 1408–1411 (1997).
Perković, O., Dahmen, K. A. & Sethna, J. P. Avalanches, Barkhausen noise, and plain old criticality. Phys. Rev. Lett. 75, 4528–4531 (1995).
Kuntz, M. C., Perković, O., Dahmen, K. A., Roberts, B. W. & Sethna, J. P. Hysteresis, avalanches, and noise: numerical methods. Comput. Sci. Eng. 1, 73–81 (1999).
Kuntz, M. C. & Sethna, J. P. Hysteresis, avalanches, and noise: numerical methods 〈http://www.lassp.cornell.edu/sethna/hysteresis/code/〉 (1998).
Perković, O., Dahmen, K. A. & Sethna, J. P. Disorder-induced critical phenomena in hysteresis: numerical scaling in three and higher dimensions. Phys. Rev. B 59, 6106–6119 (1999).
Berger, A., Inomata, A., Jiang, J. S., Pearson, J. E. & Bader, S. D. Experimental observation of disorder-driven hysteresis-loop criticality. Phys. Rev. Lett. 85, 4176–4179 (2000).
Dahmen, K. A. & Sethna, J. P. Hysteresis, avalanches, and disorder induced critical scaling: a renormalization group approach. Phys. Rev. B 53, 14872–14905 (1996).
da Silveira, R. & Kardar, M. Critical hysteresis for N-component magnets. Phys. Rev. E 59, 1355–1367 (1999).
Dahmen, K. A. & Sethna, J. P. Hysteresis loop critical exponents in 6-ɛ dimensions. Phys. Rev. Lett. 71, 3222–3225 (1993).
Visscher, P. B. Renormalization-group derivation of Navier-Stokes equation. J. Stat. Phys. 38, 989–1013 (1985).
Kadanoff, L. P., McNamara, G. R. & Zanetti, G. From automata to fluid flow: comparisons of simulation and theory. Phys. Rev. A 40, 4527–4541 (1989).
Hwa, T. & Kardar, M. Dissipative transport in open systems: an investigation of self-organized criticality. Phys. Rev. Lett. 62, 1813–1816 (1989).
Grinstein, G., Lee, D.-H. & Sachdev, S. Conservation laws, anisotropy, and “self-organized criticality” in noisy non-equilibrium systems. Phys. Rev. Lett. 64, 1927–1930 (1990).
Sornette, D., Sweeping of an instability—an alternative to self-organized criticality to get power laws without parameter tuning. J. Phys. I (Paris) 4, 209–221 (1994).
Sykes, L. R., Shaw, B. E. & Scholz, C. H. Rethinking earthquake prediction. Pure Appl. Geophys. 155, 207 (1999).
Carlson, J. M., Chayes, J. T., Grannan, E. R. & Swindle, G. H. Self-organized criticality and singular diffusion. Phys. Rev. Lett. 65, 2547–2550 (1990).
Urbach, J. S., Madison, R. C. & Markert, J. T. Interface depinning, self-organized criticality, and the Barkhausen effect. Phys. Rev. Lett. 75, 276–279 (1995).
Narayan, O. Self-similar Barkhausen noise in magnetic domain wall motion. Phys. Rev. Lett. 77, 3855–3857 (1996).
Zapperi, P., Cizeau, P., Durin, G. & Stanley, H. E. Dynamics of a ferromagnetic domain wall: avalanches, depinning transition, and the Barkhausen effect. Phys. Rev. B 58, 6353–6366 (1998).
Pazmandi F., Zarand G. & Zimanyi G. T. Self-organized criticality in the hysteresis of the Sherrington-Kirkpatrick model. Phys. Rev. Lett. 83, 1034–1037 (1999).
Pazmandi F., Zarand G. & Zimanyi G. T. Self-organized criticality in the hysteresis of the Sherrington-Kirkpatrick model. Physica B 275, 207–211 (2000).
Perković, O., Dahmen, K. A. & Sethna, J. P. Disorder-induced critical phenomena in hysteresis: a numerical scaling analysis. Preprint cond-mat/9609072, appendix A, at 〈http://xxx.lanl.gov〉 (1996).
Kuntz, M. C. & Sethna, J. P. Noise in disordered systems: the power spectrum and dynamic exponents in avalanche models. Phys. Rev. B 62, 11699–11708 (2000).
Spasojević, D., Bukvić, S., Milos̆ević, S. & Stanley, H. E. Barkhausen noise: elementary signals, power laws, and scaling relations. Phys. Rev. E 54, 2531–2546 (1996).
Family, F., Vicsek, T. & Meakin, P. Are random fractal clusters isotropic? Phys. Rev. Lett. 55, 641–644 (1985).
Dotsenko, V. S. et al. Critical and topological properties of cluster boundaries in the 3D Ising model. Phys. Rev. Lett. 71, 811–814 (1993).
Kadanoff, L. P., Nagel, S. R., Wu, L. & Zhou, S.-M. Scaling and universality in avalanches. Phys. Rev. A 39, 6524–6537 (1989).
Dhar, D. The Abelian sandpile and related models. Physica A 263, 4–25 (1999).
Paczuski, M., Maslov, S. & Bak, P. Avalanche dynamics in evolution, growth, and depinning models. Phys. Rev. E 414–443 (1996).
Malcai, O., Lidar, D. A., Biham, O. & Avnir, D. Scaling range and cutoffs in empirical fractals. Phys. Rev. E 56, 2817–2828 (1997).
Fleming, R. M. & Schneemeyer, L. F. Observation of a pulse-duration memory effect in K0.30MoO3 . Phys. Rev. Lett. 33, 2930–29321(1986).
Coppersmith, S. N. & Littlewood, P. B. Pulse-duration memory effect and deformable charge-density waves. Phys. Rev. B 36, 311–317 (1987).
Middleton, A. A. Asymptotic uniqueness of the sliding state for charge-density waves. Phys. Rev. Lett. 68, 670–673 (1992).
Amengual, A. et al. Systematic study of the martensitic transformation in a Cu-Zn-Al alloy—reversibility versus irreversibility via acoustic emission. Thermochim. Acta 116, 195–308 (1987).
Perković, O. & Sethna, J. P. Improved magnetic information storage using return-point memory. J. Appl. Phys. 81, 1590–1597 (1997).
Pepke, S. L., Carlson, J. M. & Shaw, B. E. Prediction of large events on a dynamical model of a fault. J. Geophys. Res. 99, 6769 (1994).
Council of the National Seismic System. Composite Earthquake Catalog Archive 〈http://www.cnss.org〉 (2000).
US Geological Survey National Earthquake Information Center. Earthquake information for the world 〈http://www.neic.cr.usgs.gov〉 (2001).
Sethna, J. P., Kuntz, M. C., & Houle, P. A. Crackling noise 〈http://simscience.org/crackling〉. (1999).
Brézin E. & De Dominicis C. Dynamics versus replicas in the random field Ising model. C.R. Acad. Sci. II 327, 383–390 (1999).
Cote, P. J. & Meisel, L. V. Self-organized criticality and the Barkhausen effect. Phys. Rev. Lett. 67, 1334–1337 (1991).
Meisel, L. V. & Cote, P. J. Power laws, flicker noise, and the Barkhausen effect. Phys. Rev. B 46, 10822–10828 (1992).
Stierstadt, K. & Boeckh, W. Die Temperaturabhangigkeit des Magnetischen Barkhauseneffekts. 3. Die Sprunggrössenverteilung längs der Magnetisierungskurve. Z. Phys. 186, 154 (1965).
Bertotti, G., Durin, G. & Magni, A. Scaling aspects of domain wall dynamics and Barkhausen effect in ferromagnetic materials. J. Appl. Phys. 75, 5490–5492 (1994).
Bertotti, G., Fiorillo, F. & Montorsi, A. The role of grain size in the magnetization process of soft magnetic materials. J. Appl. Phys. 67, 5574–5576 (1990).
Lieneweg, U. Barkhausen noise of 3% Si-Fe strips after plastic deformation. IEEE Trans. Magn. 10, 118–120 (1974).
Lieneweg, U. & Grosse-Nobis, W. Distribution of size and duration of Barkhausen pulses and energy spectrum of Barkhausen noise investigated on 81% nickel-iron after heat treatment. Int. J. Magn. 3, 11–16 (1972).
Bittel, H. Noise of ferromagnetic materials. IEEE Trans. Magn. 5, 359–365 (1969).
Montalenti, G. Barkhausen noise in ferromagnetic materials. Z. Angew. Phys. 28, 295–300 (1970).
Durin, G. & Zapperi, S. Scaling exponents for Barkhausen avalanches in polycrystalline and amorphous ferromagnets. Phys. Rev. Lett. 84, 4705–4708 (2000).
Petta, J. R. & Weissmann, M. B. Barkhausen pulse structure in an amorphous ferromagnet: characterization by high-order spectra. Phys. Rev. E 57, 6363–6369 (1998).
Alessandro, B., Beatrice, C., Bertotti, G., & Montorsi, A., Domain-wall dynamics and Barkhausen effect in metallic ferromagnetic materials. 1. Theory. J. Appl. Phys. 68, 2901–2907 (1990).
Alessandro, B., Beatrice, C., Bertotti, G. & Montorsi, A. Domain-wall dynamics and Barkhausen effect in metallic ferromagnetic materials. 2. Experiment. J. Appl. Phys. 68, 2908–2915 (1990).
Walsh, B., Austvold, S. & Proksch, R. Magnetic force microscopy of avalanche dynamics in magnetic media. J. Appl. Phys. 84, 5709–5714 (1998).
Krysac, L. C. & Maynard, J. D. Evidence for the role of propagating stress waves during fracture. Phys. Rev. Lett. 81, 4428–4431 (1998).
Acknowledgements
The perspective on this field described in this paper grew out of a collaboration with M. Kuntz. We thank A. Mehta for supplying the data for Fig. 7b, and D. Dolgert, M. Newman, J.-P. Bouchaud, L. C. Krysac, D. Fisher and J. Thorpe for helpful comments and references. This work was supported by NSF grants, the Cornell Theory Center and IBM.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Sethna, J., Dahmen, K. & Myers, C. Crackling noise. Nature 410, 242–250 (2001). https://doi.org/10.1038/35065675
Issue Date:
DOI: https://doi.org/10.1038/35065675
This article is cited by
-
Crackling noise microscopy
Nature Communications (2023)
-
Parabolic avalanche scaling in the synchronization of cortical cell assemblies
Nature Communications (2023)
-
One crumple at a time
Nature Physics (2023)
-
Recurrent activity in neuronal avalanches
Scientific Reports (2023)
-
Statistical laws of stick-slip friction at mesoscale
Nature Communications (2023)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.