Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Conformational diversity in a yeast prion dictates its seeding specificity

Abstract

A perplexing feature of prion-based inheritance is that prions composed of the same polypeptide can evoke different phenotypes (such as distribution of brain lesions), even when propagated in genetically identical hosts1,2,3. The molecular basis of this strain diversity and the relationship between strains and barriers limiting transmission between species remain unclear. We have used the yeast prion phenomenon [PSI+]4 to investigate these issues and examine the role that conformational differences1,2,5 may have in prion strains. We have made a chimaeric fusion between the prion domains of two species (Saccharomyces cerevisae and Candida albicans) of Sup35, the protein responsible for [PSI+]4,6. Here we report that this chimaera forms alternate prion strains in vivo when initiated by transient overexpression of different Sup35 species. Similarly, in vitro the purified chimaera, when seeded with different species of Sup35 fibres, establishes and propagates distinct amyloid conformations. These fibre conformations dictate amyloid seeding specificity: a chimaera seeded by S. cerevisiae fibres efficiently catalyses conversion of S. cerevisiae Sup35 but not of C. albicans Sup35, and vice versa. These and other considerations1,2,5,7,8 argue that heritable prion strains result from self-propagating conformational differences within the prion protein itself. Moreover, these conformational differences seem to act in concert with the primary structure to determine a prion's propensity for transmission across a species barrier.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of CHIM prion formation in vivo. ac, Induction experiments carried out in an SC-EF (a), CA-EF (b) or CHIM-EF (c) background, using the indicated species of inducer prion.
Figure 2: CHIM forms self-seeded amyloid fibres in vitro.
Figure 3: Generation and propagation of distinct CHIM fibre conformations.
Figure 4: CHIM amyloids retain specificity of parent seed.

Similar content being viewed by others

References

  1. Prusiner, S. B. Prions. Proc. Natl Acad. Sci. USA 95, 13363–13383 (1998).

    Article  ADS  CAS  Google Scholar 

  2. Bessen, R. A. et al. Non-genetic propagation of strain-specific properties of scrapie prion protein. Nature 375, 698–700 (1995).

    Article  ADS  CAS  Google Scholar 

  3. Derkatch, I. L., Chernoff, Y. O., Kushnirov, V. V., Inge-Vechtomov, S. G. & Liebman, S. W. Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae. Genetics 144, 1375–1386 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Serio, T. R. & Lindquist, S. L. [PSI+]: an epigenetic modulator of translation termination efficiency. Annu. Rev. Cell. Dev. Biol. 15, 661–703 (1999).

    Article  CAS  Google Scholar 

  5. Telling, G. C. et al. Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity. Science 274, 2079–2082 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Paushkin, S. V., Kushnirov, V. V., Smirnov, V. N. & Ter-Avanesyan, M. D. Propagation of the yeast prion-like [psi+] determinant is mediated by oligomerization of the SUP35-encoded polypeptide chain release factor. EMBO J. 15, 3127–3134 (1996).

    Article  CAS  Google Scholar 

  7. Collinge, J., Sidle, K. C., Meads, J., Ironside, J. & Hill, A. F. Molecular analysis of prion strain variation and the aetiology of ‘new variant’ CJD. Nature 383, 685–690 (1996).

    Article  ADS  CAS  Google Scholar 

  8. Collinge, J. Variant Creutzfeldt-Jakob disease. Lancet 354, 317–323 (1999).

    Article  CAS  Google Scholar 

  9. Stansfield, I. et al. The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae. EMBO J 14, 4365-4373 (1995).

    Article  Google Scholar 

  10. Chernoff, Y. O., Lindquist, S. L., Ono, B., Inge-Vechtomov, S. G. & Liebman, S. W. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. Science 268, 880–884 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Ter-Avanesyan, M. D., Dagkesamanskaya, A. R., Kushnirov, V. V. & Smirnov, V. N. The SUP35 omnipotent suppressor gene is involved in the maintenance of the non-Mendelian determinant [psi+] in the yeast Saccharomyces cerevisiae. Genetics 137, 671–676 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. DePace, A. H., Santoso, A., Hillner, P. & Weissman, J. S. A critical role for amino-terminal glutamine/asparagine repeats in the formation and propagation of a yeast prion. Cell 93, 1241–1252 (1998).

    Article  CAS  Google Scholar 

  13. Patino, M. M., Liu, J. J., Glover, J. R. & Lindquist, S. Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science 273, 622–626 (1996).

    Article  ADS  CAS  Google Scholar 

  14. King, C. Y. et al. Prion-inducing domain 2-114 of yeast Sup35 protein transforms in vitro into amyloid-like filaments. Proc. Natl Acad. Sci. USA 94, 6618–6622 (1997).

    Article  ADS  CAS  Google Scholar 

  15. Glover, J. R. et al. Self-seeded fibers formed by Sup35, the protein determinant of [PSI+], a heritable prion-like factor of S. cerevisiae. Cell 89, 811–819 (1997).

    Article  CAS  Google Scholar 

  16. Kushnirov, V. V., Kochneva-Pervukhova, N. V., Chechenova, M. B., Frolova, N. S. & Ter-Avanesyan, M. D. Prion properties of the Sup35 protein of yeast Pichia methanolica. EMBO J. 19, 324–331 (2000).

    Article  CAS  Google Scholar 

  17. Santoso, A., Chien, P., Osherovich, L. Z. & Weissman, J. S. Molecular basis of a yeast prion species barrier. Cell 100, 277–288 (2000).

    Article  CAS  Google Scholar 

  18. Chernoff, Y. O. et al. Evolutionary conservation of prion-forming abilities of the yeast Sup35 protein. Mol. Microbiol. 35, 865–876 (2000).

    Article  CAS  Google Scholar 

  19. Liu, J. J. & Lindquist, S. Oligopeptide-repeat expansions modulate ’protein-only’ inheritance in yeast. Nature 400, 573–576 (1999).

    Article  ADS  CAS  Google Scholar 

  20. Wickner, R. B. [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 264, 566–569 (1994).

    Article  ADS  CAS  Google Scholar 

  21. Sondheimer, N. & Lindquist, S. Rnq1: an epigenetic modifier of protein function in yeast. Mol. Cell 5, 163–172 (2000).

    Article  CAS  Google Scholar 

  22. Tuite, M. F., Mundy, C. R. & Cox, B. S. Agents that cause a high frequency of genetic change from [psi+] to [psi-] in Saccharomyces cerevisiae. Genetics 98, 691–711 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhou, P. et al. The yeast non-Mendelian factor [ETA+] is a variant of [PSI+], a prion-like form of release factor eRF3. EMBO J. 18, 1182–1191 (1999).

    Article  CAS  Google Scholar 

  24. Serio, T. R. et al. Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science 289, 1317–1321 (2000).

    Article  ADS  CAS  Google Scholar 

  25. Paushkin, S. V., Kushnirov, V. V., Smirnov, V. N. & Ter-Avanesyan, M. D. In vitro propagation of the prion-like state of yeast Sup35 protein. Science 277, 381–383 (1997).

    Article  CAS  Google Scholar 

  26. Kochneva-Pervukhova, N. V. et al. Mechanism of inhibition of Psi+ prion determinant propagation by a mutation of the N-terminus of the yeast Sup35 protein. EMBO J. 17, 5805–5810 (1998).

    Article  CAS  Google Scholar 

  27. Appel, T. R., Dumpitak, C., Matthiesen, U. & Riesner, D. Prion rods contain an inert polysaccharide scaffold. Biol. Chem. 380, 1295–1306 (1999).

    Article  CAS  Google Scholar 

  28. Klein, T. R., Kirsch, D., Kaufmann, R. & Riesner, D. Prion rods contain small amounts of two host sphingolipids as revealed by thin-layer chromatography and mass spectrometry. Biol. Chem. 379, 655–666 (1998).

    Article  CAS  Google Scholar 

  29. Kocisko, D. A. et al. Species specificity in the cell-free conversion of prion protein to protease-resistant forms: a model for the scrapie species barrier. Proc. Natl Acad. Sci. USA 92, 3923–3927 (1995).

    Article  ADS  CAS  Google Scholar 

  30. Wilesmith, J. W., Ryan, J. B. & Atkinson, M. J. Bovine spongiform encephalopathy—Epidemiologic studies on the origin.. Vet. Rec. 128, 199–203 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Bourne, H. Field, D. Julius, B. Panning, S. Lindquist, J. Reddy, S. Ribich, M. Scott and members of the Weissman and Lim lab for discussion and comments. This work was supported by the NIH, the Searle Scholars Program, the David and Lucile Packard Foundation, the Howard Hughes Medical Institute and a National Science Foundation Graduate Fellowship (P.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan S. Weissman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chien, P., Weissman, J. Conformational diversity in a yeast prion dictates its seeding specificity. Nature 410, 223–227 (2001). https://doi.org/10.1038/35065632

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35065632

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing