NO-independent regulatory site on soluble guanylate cyclase


Nitric oxide (NO) is a widespread, potent, biological mediator that has many physiological and pathophysiological roles1. Research in the field of NO appears to have followed a straightforward path, and the findings have been progressive: NO and cyclic GMP are involved in vasodilatation; glycerol trinitrate relaxes vascular smooth muscles by bioconversion to NO; mammalian cells synthesize NO; and last, NO mediates vasodilatation by stimulating the soluble guanylate cyclase (sGC), a heterodimeric (α/β) haem protein that converts GTP to cGMP2–4. Here we report the discovery of a regulatory site on sGC. Using photoaffinity labelling, we have identified the cysteine 238 and cysteine 243 region in the α1-subunit of sGC as the target for a new type of sGC stimulator. Moreover, we present a pyrazolopyridine, BAY 41-2272, that potently stimulates sGC through this site by a mechanism that is independent of NO. This results in antiplatelet activity, a strong decrease in blood pressure and an increase in survival in a low-NO rat model of hypertension, and as such may offer an approach for treating cardiovascular diseases.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: In vitro effects of BAY 41-2272.
Figure 2: The NO-independent regulatory site of sGC.
Figure 3: In vivo effects of BAY 41-2272.


  1. 1

    Moncada, S., Palmer, R. M. & Higgs, E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43, 109–142 (1991).

    CAS  PubMed  Google Scholar 

  2. 2

    Furchgott, R. F. Endothelium-derived relaxing factor: Discovery, early studies, and identification as nitric oxide (Nobel lecture). Angew. Chem. Int. Ed. Engl. 38, 1870–1880 (1999).

    CAS  Article  Google Scholar 

  3. 3

    Murad, F. Discovery of some of the biological effects of nitric oxide and its role in cell signaling (Nobel lecture). Angew. Chem. Int. Ed. Engl. 38, 1857–1868 (1999).

    Article  Google Scholar 

  4. 4

    Ignarro, L. J. Nitric oxide: A unique endogenous signaling molecule in vascular biology (Nobel lecture). Angew. Chem. Int. Ed. Engl. 38, 1882–1892 (1999).

    CAS  Article  Google Scholar 

  5. 5

    Straub, A. et al. Substituted pyrazole derivatives. WO 2,000,006,568 (2000). Chem. Abstr. 132, 122629 (2000)

    Google Scholar 

  6. 6

    Garthwaite, J. et al. Potent and selective inhibition of nitric oxide-sensitive guanylyl cyclase by 1H[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. Mol. Pharmacol. 48, 184–188 (1995).

    CAS  PubMed  Google Scholar 

  7. 7

    Schrammel, A., Behrends, S., Schmidt, K., Koesling, D. & Mayer, B. Characterization of 1H[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one as a heme-site inhibitor of nitric oxide-sensitive guanylyl cyclase. Mol. Pharmacol. 50, 1–5 (1996).

    CAS  PubMed  Google Scholar 

  8. 8

    Brunner, F., Schmidt, K., Nielsen, E. B. & Mayer, B. Novel guanylyl cyclase inhibitor potently inhibits cyclic GMP accumulation in endothelial cells and relaxation of bovine pulmonary artery. J. Pharmacol. Exp. Ther. 277, 48–53 (1996).

    CAS  PubMed  Google Scholar 

  9. 9

    Friebe, A., Schultz G. & Koesling, D. Sensitizing soluble guanylate cyclase to become a highly CO-sensitive enzyme. EMBO J. 15, 6863–6868 (1996).

    CAS  Article  Google Scholar 

  10. 10

    Hoenicka, M. et al. Purified soluble guanylyl cyclase expressed in a baculovirus/Sf9 system: stimulation by YC-1, NO and CO. J. Mol. Med. 77, 14–23 (1999).

    CAS  Article  Google Scholar 

  11. 11

    Nakane, M. et al. Molecular cloning and expression of cDNAs coding for soluble guanylate cyclase from rat lung. J. Biol. Chem. 265, 16841–16845 (1990).

    CAS  PubMed  Google Scholar 

  12. 12

    Zabel, U., Weeger, M., La, M. & Schmidt, H. H. H. W. Human soluble guanylate cyclase: functional expression and revised isoenzyme family. Biochem. J. 335, 51–57 (1998).

    CAS  Article  Google Scholar 

  13. 13

    Stasch, J. P., Kazda, S. & Neuser, D. Different effects of ANP and nitroprusside on cyclic GMP extrusion of isolated aorta. Eur. J. Pharmacol. 174, 279–282 (1989).

    CAS  Article  Google Scholar 

  14. 14

    Becker, E. M. et al. The vasodilator-stimulated phosphoprotein (VASP): target of YC-1 and nitric oxide effects in human and rat platelets. J. Cardiovasc. Pharmacol. 35, 390–397 (2000).

    CAS  Article  Google Scholar 

  15. 15

    Mülsch, A. et al. Effect of YC-1, an NO-independent, superoxide-sensitive stimulator of soluble guanylyl cyclase, on smooth muscle responsiveness to nitrovasodilators. Br. J. Pharmacol. 120, 681–689 (1997).

    Article  Google Scholar 

  16. 16

    Ko, F. N., Wu, C. C., Kuo, S. C., Lee, F. Y. & Teng, C. M. YC-1, a novel activator of platelet guanylate cyclase. Blood 84, 4226–4233 (1994).

    CAS  PubMed  Google Scholar 

  17. 17

    Wu, C. C., Ko, F. N., Kuo, S. C., Lee, F. Y. & Teng, C. M. YC-1 inhibited human platelet aggregation through NO-independent activation of soluble guanylate cyclase. Br. J. Pharmacol. 116, 1973–1978 (1995).

    CAS  Article  Google Scholar 

  18. 18

    Becker, E. M. et al. Generation and characterization of a stable soluble guanylate cyclase-overexpressing CHO cell line. Nitric Oxide 3, 55–66 (1999).

    CAS  Article  Google Scholar 

  19. 19

    Friebe, A. & Koesling, D. Mechanism of YC-1 induced activation of soluble guanylyl cyclase. Mol. Pharmacol. 53, 123–127 (1998).

    CAS  PubMed  Google Scholar 

  20. 20

    Hobbs, A. J. Soluble guanylate cyclase: the forgotten sibling. Trends Pharmacol. Sci. 18, 484–491 (1997).

    CAS  Article  Google Scholar 

  21. 21

    Galle, J. et al. Effects of the soluble guanylyl cyclase activator, YC-1, on vascular tone, cyclic GMP levels and phosphodiesterase activity. Br. J. Pharmacol. 127, 195–203 (1999).

    CAS  Article  Google Scholar 

  22. 22

    Hirth-Dietrich, C., Stasch, J. P. & Ganten, D. Transgenic rats with an additional renin gene (TGR(mRen2)27) as a sensitive model for the renal effects of NO synthase inhibition. Naunyn-Schmiedeberg's Arch. Pharmacol. 350, R6 (1994).

    Google Scholar 

  23. 23

    Zhao, Y., Schelvis, J. P. M., Babcock, G. T. & Marletta, M. A. Identification of histidine 105 in the β1 subunit of soluble guanylate cyclase as the heme proximal ligand. Biochemistry 37, 4502–4509 (1998).

    CAS  Article  Google Scholar 

  24. 24

    Zhao, Y. & Marletta, M. A. Localization of the heme binding region in soluble guanylate cyclase. Biochemistry 36, 15959–15964 (1997).

    CAS  Article  Google Scholar 

  25. 25

    Kharitonov, V. G., Sharma, V. S., Magde, D. & Koesling, D. Kinetics and equilibria of soluble guanylate cyclase ligation by CO: effect of YC-1. Biochemistry 38, 10699–10706 (1999).

    CAS  Article  Google Scholar 

  26. 26

    Born, G. V. R. & Cross, M. J. The aggregation of blood platelets. J. Physiol. (Lond.) 168, 178–185 (1963).

    CAS  Article  Google Scholar 

  27. 27

    Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

    ADS  CAS  Article  Google Scholar 

  28. 28

    Ahr, H. H. & Steinke, W. Vasodilation and first experience with quantitative studies in whole-body autoradiography during drug development. Xenobiotic Metab. Dispos. 9, 371–378 (1994).

    Google Scholar 

Download references


We thank C. Robyr-Fürstner for the synthesis of YC-1; E. Bischoff for performing the PDE assays; and D. Wood for critical comments on the manuscript.

Author information



Corresponding author

Correspondence to Johannes-Peter Stasch.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stasch, JP., Becker, E., Alonso-Alija, C. et al. NO-independent regulatory site on soluble guanylate cyclase. Nature 410, 212–215 (2001).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing