Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Microbial degradation of methanesulphonic acid: a missing link in the biogeochemical sulphur cycle

Abstract

ATMOSPHERIC dimethyl sulphide, arising from marine algae, cyanobacteria and salt marsh plants such as Spartina, is the principal sulphur compound entering the atmosphere from terrestrial and aquatic environments 1–6. Methanesulphonic acid (CH3SO3H; MSA) has been identified as a major product of the photochemical oxidation in the atmosphere of dimethyl sulphide1–3,5,7–9. Dimethyl sulphide and MSA are thus predominantly, if not exclusively, biogenic in origin, and are the main gaseous links in the biogeochemical sulphur cycle. MSA is a stable compound, not undergoing photochemical decomposition3, so its removal from the atmosphere is by wet and dry deposition. MSA partitions into the aerosol phase, as well as nucleating droplet formation, and is deposited in rain and snow. Analysis of Antarctic ice cores10 gives evidence of its global deposition over many thousands of years. The subsequent fate of MSA deposited on land was unknown. Here we describe terrestrial bacteria that grow on MSA. Their activities in the natural environment would result in the mineralization of MSA to carbon dioxide and sulphate, thus completing our understanding of this part of the sulphur cycle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Watts, S. F., Brimblecombe, P. & Watson, A. J. Atmos. Environ. 24 A, 353–359 (1990).

    Article  ADS  Google Scholar 

  2. Hatakeyama, S., Okuda, M. & Akimoto, H. Geophys. Res. Lett. 9, 583–586 (1982).

    Article  ADS  CAS  Google Scholar 

  3. Andreae, M. O. in The Role of Air-Sea Exchange in Geochemical Cycling (ed. Buat-Menard, P.) 5–25, 331–362 (Reidel, New York, 1986).

    Google Scholar 

  4. Dacey, J. W. H., King, G. M. & Wakeham, S. G. Nature 330, 643–645 (1987).

    Article  ADS  CAS  Google Scholar 

  5. Kelly, D. P. & Smith, N. A. Adv. microb. Ecol. 11, 345–385 (1990).

    Article  CAS  Google Scholar 

  6. Ferek, R. J., Chatfield, R. B. & Andreae, M. O. Nature 320, 514–516 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Berresheim, H. J. J. geophys. Res. 92, 245–262 (1987).

    Article  Google Scholar 

  8. Berresheim, H. et al. J. atmos. Chem. 10, 341–370 (1990).

    Article  CAS  Google Scholar 

  9. Grosjean, D. Envir. Sci. Technol. 18, 460–468 (1984).

    Article  ADS  CAS  Google Scholar 

  10. Saigne, C. & Legrand, M. Nature 330, 240–242 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Smith, A. L. & Kelly, D. P. J. gen. Microbiol. 115, 377–384 (1979).

    Article  Google Scholar 

  12. Kelly, D. P. & Kuenen, J. G. in Aspects of Microbial Metabolism and Ecology (ed. Codd, G. A.) 211–240 (Academic, London, 1984).

    Google Scholar 

  13. Owens, J. D. & Keddie, R. M. J. appl. Bact. 32, 338–347 (1969).

    Article  CAS  Google Scholar 

  14. Kelly, D. P. & Wood, A. P. in Microbial Growth on C-1 Compounds, Fourth Symposium (eds Crawford, R. L. & Hanson, R. S.) 324–329 (American Society for Microbiology, Washington DC, 1984).

    Google Scholar 

  15. Dahl, J. S., Mehta, R. J. & Hoare, D. S. J. Bact. 109, 916–921 (1972).

    CAS  PubMed  Google Scholar 

  16. Colby, J., Dalton, H. & Whittenbury, R. A. Rev. Microbiol. 33, 481–517 (1979).

    Article  CAS  Google Scholar 

  17. Daughton, C. G., Cook, A. M. & Alexander, M. FEMS microb. Lett. 5, 91–93 (1979).

    Article  CAS  Google Scholar 

  18. Kung, H. F. & Wagner, C. Biochem. J. 116, 257–265 (1970).

    Article  Google Scholar 

  19. Wagner, C., Lusty, S. M., Kung, F. & Rogers, N. L. J. biol. Chem. 242, 1287–1293 (1967).

    CAS  PubMed  Google Scholar 

  20. Thysse, G. J. E. & Wanders, T. H. Antonie van Leeuwenhoek J. microb. Serol. 38, 56–63 (1972).

    Article  Google Scholar 

  21. Thysse, G. J. E. & Wanders, T. H. Antonie van Leeuwenhoek J. microb. Serol. 40, 25–37 (1974).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, S., Kelly, D. & Murrell, J. Microbial degradation of methanesulphonic acid: a missing link in the biogeochemical sulphur cycle. Nature 350, 627–628 (1991). https://doi.org/10.1038/350627a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/350627a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing