Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Geological constraints on tidal dissipation and dynamical ellipticity of the Earth over the past three million years


The evolution of the Solar System has been shown to be chaotic1, which limits our ability to retrace the orbital and precessional motion of the Earth over more than 35–50 Myr (ref. 2). Moreover, the precession, obliquity and insolation parameters3,4 can also be influenced by secular variations in the tidal dissipation and dynamical ellipticity of the Earth induced by glacial cyclicity3,5,6,7,8,9,10 and mantle convection11. Here we determine the average values of these dissipative effects over the past three million years. We have computed the optimal fit between an exceptional palaeoclimate record from the eastern Mediterranean Sea and a model of the astronomical and insolation history3 by testing a number of values for the tidal dissipation and dynamical ellipticity parameters. We find that the combined effects of dynamical ellipticity and tidal dissipation were, on average, significantly lower over the past three million years, compared to their present-day values (determined from artificial satellite data and lunar ranging3,4,12). This secular variation associated with the Plio-Pleistocene ice load history has caused an average acceleration in the Earth's rotation over the past 3 Myr, which needs to be considered in the construction of astronomical timescales and in research into the stationarity of phase relations in the ocean–climate system through time.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Location of ODP Site 967.
Figure 2: Cycle stratigraphy of the studied interval in ODP site 967.
Figure 3: Examples of cross-spectra between Ti/Al and P - 1/2T time series.
Figure 4: x–y plot of the regression coefficient against the obliquity-related time lag between the 1-kyr linear interpolated time series of Ti/Al and P-1/2T for all analysed La90 solutions (see text).


  1. Laskar, J. The chaotic motion of the solar system: A numerical estimate of the size of the chaotic zones. Icarus 88, 266–291 (1990).

    Article  ADS  Google Scholar 

  2. Laskar, J. The limits of Earth orbital calculations for geological time scale use. Phil. Trans. R. Soc. Lond. A 357 1735–1759 (1999).

    Article  ADS  Google Scholar 

  3. Laskar, J., Joutel, F. & Boudin, F. Orbital precessional, and insolation quantities for the Earth from -20 to +10 Myr. Astron. Astrophys. 270, 522–533 (1993).

    ADS  Google Scholar 

  4. Quinn, T. R., Tremaine, S. & Duncan, M. A. A three million year integration of the Earth's orbit. Astron. Journal 101, 2287–2305 (1991).

    Article  ADS  Google Scholar 

  5. Dehant, V., Loutre, M.-F. & Berger, A. Potential impact of the Northern Hemisphere Quaternary ice sheets on the frequencies of the astroclimatic orbital parameters. J. Geophys. Res. 95, 7573–7578 (1990).

    Article  ADS  Google Scholar 

  6. Tushingham, A. M. & Peltier, W. R. ICE-3G: A new global model of late Pleistocene deglaciation based on geophysical predictions of post-glacial relative sea level change. J. Geophys. Res. 96, 4497–4523 (1991).

    Article  ADS  Google Scholar 

  7. Peltier, W. R. & Jiang, X. The precession constant of the Earth: Variations through the ice age. Geophys. Res. Lett. 21, 2299–2302 (1994).

    Article  ADS  Google Scholar 

  8. Mitrovica, J. X. & Forte, A. M. Pleistocene glaciation and the Earth's precession constant. Geophys. J. Int. 121, 21–32 (1995).

    Article  ADS  Google Scholar 

  9. Mitrovica, J. X. & Forte, A. M. Radial profile of mantle viscosity: Results from the joint inversions of convection and postglacial rebound observables. J. Geophys. Res. 102(B2), 2751–2769 (1997).

    Article  ADS  Google Scholar 

  10. Mitrovica, J. X., Forte, A. M. & Pan, R. Glaciation-induced variations in the Earth's precession frequency, obliquity and insolation over the last 2.6 Ma. Geophys. J. Int. 128, 270–284 (1997).

    Article  ADS  Google Scholar 

  11. Forte, A. M. & Mitrovica, J. X. A resonance in the Earth's obliquity and precession over the past 20 Myr driven by mantle convection. Nature 390, 676–679 (1997).

    Article  ADS  CAS  Google Scholar 

  12. Stephenson, F. R. & Morrison, L. V. Long-term fluctuations in the Earth's rotation: 700 BC to AD 1990. Phil. Trans. R. Soc. Lond. A 351, 165–202 (1995).

    Article  ADS  Google Scholar 

  13. Lourens, L. J. et al. Evaluation of the Plio-Pleistocene astronomical timescale. Paleoceanography 11, 391–413 (1996).

    Article  ADS  Google Scholar 

  14. Wehausen, R. & Brumsack, H.-J. Chemical cycles in Pliocene sapropel-bearing and sapropel-barren eastern Mediterranean sediments. Palaeogeogr. Palaeoclimatol. Palaeoecol. 158, 325–352 (2000).

    Article  Google Scholar 

  15. Kroon, D. et al. Oxygen isotope and sapropel stratigraphy in the eastern Mediterranean during the last 3.2 million years. Proc. ODP Sci. Res. 160, 181–189 (1998).

    CAS  Google Scholar 

  16. Hilgen, F. J. Astronomical calibration of Gauss to Matuyama sapropels in the Mediterranean and implications for the geomagnetic polarity time scale. Earth Planet. Sci. Lett. 104, 226–244 (1991).

    Article  ADS  Google Scholar 

  17. Venkatarathnam, K. & Ryan, B. F. Dispersal patterns of clay minerals in the eastern Mediterranean Sea. Mar. Geol. 11, 261–282 (1971).

    Article  ADS  Google Scholar 

  18. Rossignol-Strick, M. African monsoons: an immediate climate response to orbital insolation. Nature 304, 46–49 (1983).

    Article  ADS  Google Scholar 

  19. Raymo, M. E., Ruddiman, W. F., Backman, J., Clement, B. M. & Martinson, D. G. Late Pliocene variation in northern hemisphere ice sheets and North Atlantic Deep Water circulation. Paleoceanography 4, 413–446 (1989).

    Article  ADS  Google Scholar 

  20. Lambeck, K. The Earth's Variable Rotation: Geophysical Causes and Consequences (Cambridge University Press, Cambridge, 1980).

    Book  Google Scholar 

  21. Clemens, S. C., Murray, D. W. & Prell, W. L. Nonstationary phase of the Plio-Pleistocene Asian monsoon. Science 274, 943–948 (1996).

    Article  ADS  CAS  Google Scholar 

  22. Imbrie, J. et al. in Milankovitch and Climate (eds Berger, A., Imbrie, J., Hays, J., Kukla, G. & Satzman, B.) 269–305 (Reidel, Dordrecht, 1984).

    Google Scholar 

  23. Bard, E., Hamelin, B. & Fairbanks, R. G. U-Th ages obtained by mass spectrometry in corals from Barbados: sea level during the last 1300,000 years. Nature 345, 405–410 (1990).

    Article  ADS  CAS  Google Scholar 

  24. Lawrence-Edwards, R., Chen, J. H., Ku, T.-L. & Wasserburg, G. J. Precise timing of the last interglacial period from mass-spectrometric determination of thorium-230 in corals. Science 236, 1547–1553 (1987).

    Article  ADS  Google Scholar 

  25. Sakamoto, T., Janecek, T. & Emeis, K.-C. Continuous sedimentary sequences from the eastern Mediterranean sea: Composite depth sections. Proc. ODP Sci. Res. 160, 37–59 (1998).

    CAS  Google Scholar 

  26. Gordeyev, V. V. & Lisitsyn, A. P. The average chemical composition of suspensions in the world's rivers and the supply of sediments to the ocean by streams. Dokl. Earth Sci. 238, 150–153 (1978). (Transl.)

    Google Scholar 

  27. Martin, J.-M. & Meybeck, M. elemental mass-balance of material carried by major world rivers. Mar. Chem. 7, 173–206 (1979).

    Article  CAS  Google Scholar 

  28. Ganor, E. & Mamane, Y. Transport of Saharan dust across the eastern Mediterranean. Atmos. Environ. 16, 581–587 (1982).

    Article  ADS  CAS  Google Scholar 

  29. Ganor, E., Foner, H. A., Brenner, S., Neeman, E. & Lavi, N. The chemical composition of aerosols settling in Israel following dust storms. Atmos. Environ. A 25, 2665–2670 (1991).

    Article  ADS  Google Scholar 

  30. Paillard, D., Labeyrie, L. & Yiou, P. AnalySeries 1.1—Macintosh program performs time-series analysis. Eos 77, 379 (1996).

    Article  ADS  Google Scholar 

Download references


We thank F. J. Hilgen, J. Laskar, J. X. Mitrovica, G. J. Reichart, J. Steenbrink and J. W. Zachariasse for discussions and comments, and J. Laskar and J. X. Mitrovica in particular for providing the astronomical solution and Earth model calculations, respectively. This work was supported by the Dutch National Science Foundation (NWO) and the German Science foundation (DFG) through ODP-SPP.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Lucas J. Lourens.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lourens, L., Wehausen, R. & Brumsack, H. Geological constraints on tidal dissipation and dynamical ellipticity of the Earth over the past three million years. Nature 409, 1029–1033 (2001).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing