Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Recent mass balance of polar ice sheets inferred from patterns of global sea-level change

Abstract

Global sea level is an indicator of climate change1,2,3, as it is sensitive to both thermal expansion of the oceans and a reduction of land-based glaciers. Global sea-level rise has been estimated by correcting observations from tide gauges for glacial isostatic adjustment—the continuing sea-level response due to melting of Late Pleistocene ice—and by computing the global mean of these residual trends4,5,6,7,8,9. In such analyses, spatial patterns of sea-level rise are assumed to be signals that will average out over geographically distributed tide-gauge data. But a long history of modelling studies10,11,12 has demonstrated that non-uniform—that is, non-eustatic—sea-level redistributions can be produced by variations in the volume of the polar ice sheets. Here we present numerical predictions of gravitationally consistent patterns of sea-level change following variations in either the Antarctic or Greenland ice sheets or the melting of a suite of small mountain glaciers. These predictions are characterized by geometrically distinct patterns that reconcile spatial variations in previously published sea-level records. Under the—albeit coarse—assumption of a globally uniform thermal expansion of the oceans, our approach suggests melting of the Greenland ice complex over the last century equivalent to 0.6 mm yr-1 of sea-level rise.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Predicted geometries of sea-level change due to continuing ice mass variations.
Figure 2: Predicted sea-level trends due to continuing ice mass variations at a subset of tide gauge sites.
Figure 3: A new analysis of tide gauge records.

References

  1. 1

    Warrick, R. A., Le Provost, C., Meier, M. F., Oerlemans, J. & Woodworth, P. L. in The Science of Climate Change: Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change (eds Houghton, J. T. et al.) 361–405 (Cambridge Univ. Press, Cambridge, 1990).

    Google Scholar 

  2. 2

    Woodworth, P. L., Pugh, D. T., De Ronde, J. G., Warrick, R. A. & Hannah, J. (eds) Sea Level Changes: Determination and Effects (American Geophysical Union, Washington, 1992).

    Book  Google Scholar 

  3. 3

    Warrick, R. A., Barrow, E. M. & Wigley, T. M. L. (eds) Climate and Sea Level Change: Observations, Projections and Implications (Cambridge Univ. Press, Cambridge, 1993).

    Google Scholar 

  4. 4

    Peltier, W. R. & Tushingham, A. M. Global sea-level rise and the greenhouse effect: Might they be connected? Science 244, 806–810 (1989).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Douglas, B. C. Global sea level rise. J. Geophys. Res. 96, 6981–6992 (1991).

    ADS  Article  Google Scholar 

  6. 6

    Peltier, W. R. & Tushingham, A. M. Influence of glacial isostatic adjustment on tide gauge measurements of secular sea level change. J. Geophys. Res. 96, 6779–6796 (1991).

    ADS  Article  Google Scholar 

  7. 7

    Trupin, A. S. & Wahr, J. M. Spectroscopic analysis of global tide gauge sea level data. Geophys. J. Int. 100, 441–453 (1990).

    ADS  Article  Google Scholar 

  8. 8

    Douglas, B. C. Global sea level rise: A redetermination. Surv. Geophys. 18, 279–292 (1997).

    ADS  Article  Google Scholar 

  9. 9

    Peltier, W. R. Postglacial variations in the level of the sea: Implications for climate dynamics and solid-Earth geophysics. Rev. Geophys. 36, 603–689 (1998).

    ADS  Article  Google Scholar 

  10. 10

    Woodward, R. S. On the form and position of mean sea level. US Geol. Surv. Bull. 48, 87–170 (1888).

    Google Scholar 

  11. 11

    Daly, R. A. Pleistocene changes of sea level. Am. J. Sci. 10, 281–313 (1925).

    ADS  Article  Google Scholar 

  12. 12

    Farrell, W. E. & Clark, J. T. On postglacial sea level. Geophys. J. R. Astron. Soc. 46, 647–667 (1976).

    Article  Google Scholar 

  13. 13

    Meier, M. F. Contribution of small glaciers to global sea level. Science 226, 1418–1421 (1984).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Milne, G. A., Mitrovica, J. X. & Davis, J. L. Near-field hydro-isostasy: The implementation of a revised sea-level equation. Geophys. J. Int. 139, 464–482 (1999).

    ADS  Article  Google Scholar 

  15. 15

    Dziewonski, A. M. & Anderson, D. L. Preliminary reference Earth model (PREM). Phys. Earth Planet. Inter. 25, 297–356 (1981).

    ADS  Article  Google Scholar 

  16. 16

    James, T. S. & Ivins, E. R. Global geodetic signatures of the Antarctic ice sheet. J. Geophys. Res. 102, 605–633 (1997).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Bentley, C. R. & Giovinetto, M. B. in Proceedings of the International Conference on the Role of the Polar Regions in Global Change (eds Weller, G., Wilson, C. L. & Severin, B. A. B.) 481–488 (Univ. Alaska, Fairbanks, 1991).

    Google Scholar 

  18. 18

    Jacobs, S. S., Hellmer, H. H., Doake, C. S. M., Jenkins, A. & Frolich, R. M. Melting of ice shelves and the mass balance of Antarctica. J. Glacial. 38, 375–387 (1992).

    ADS  Article  Google Scholar 

  19. 19

    Krabill, W. et al. Greenland ice sheet: High-elevation balance and peripheral thinning. Science 289, 428–430 (2000).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Spencer, N. E. & Woodworth, P. L. Data Holdings of the Permanent Service for Mean Sea Level (Permanent Service for Mean Sea Level, Bidston, Birkenhead, 1993).

    Google Scholar 

  21. 21

    Plag, H.-P. & Jüttner, H.-U. Inversion of global tide gauges for present-day ice-load changes. Proc. 2nd Int. Symp. Environ. Res. Arctic. (in the press).

  22. 22

    Tushingham, A. M. & Peltier, W. R. Ice-3G: A new global model of late Pleistocene deglaciation based upon geophysical predictions of postglacial relative sea level. J. Geophys. Res. 96, 4497–4523 (1991).

    ADS  Article  Google Scholar 

  23. 23

    Davis, J. L. & Mitrovica, J. X. Glacial isostatic adjustment and the anomalous tide gauge record of eastern North America. Nature 379, 331–333 (1996).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Shennan, I. & Woodworth, P. L. A comparison of late Holocene and twentieth-century sea level trends from the UK and North Sea region. Geophys. J. Int. 109, 96–105 (1992).

    ADS  Article  Google Scholar 

  25. 25

    Woodworth, P. L., Tsimplis, M. N., Flather, R. A. & Shennan, I. A review of the trends observed in British Isles mean sea level data measured by tide gauges. Geophys. J. Int. 136, 651–670 (1999).

    ADS  Article  Google Scholar 

  26. 26

    Lambeck, K., Smither, C. & Ekman, M. Tests of glacial rebound models for Fennoscandinavia based on instrumented sea- and lake-level records. Geophys. J. Int. 135, 375–387 (1998).

    ADS  Article  Google Scholar 

  27. 27

    Trupin, A. S., Meier, M. F. & Wahr, J. M. Effect of melting glaciers on the Earth's rotation and gravitational field: 1965–1984. Geophys. J. Int. 108, 1–15 (1992).

    ADS  Article  Google Scholar 

  28. 28

    Levitus, S., Antonov, J. L., Boyer, T. P. & Stephen, C. Warming of the global ocean. Science 287, 2225–2229 (2000).

    ADS  CAS  Article  Google Scholar 

  29. 29

    Mitrovica, J. X. & Peltier, W. R. On postglacial geoid subsidence over the equatorial oceans. J. Geophys. Res. 96, 20053–20071 (1991).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank J. Wahr, P. L. Woodworth and T. F. Baker for constructive reviews. We also thank H.-P. Plag for advice on the original manuscript and for sending us a preprint of his article with H.-U. Jüttner. M. Dyurgerov clarified recent models of mountain glacier mass balance. We acknowledge funding from the Ontario Government Premier's Research Excellence Award Program, the Canadian Institute for Advanced Research, NSERC, NASA, NSF, the Smithsonian Institution, NERC and the Royal Society of Great Britain.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jerry X. Mitrovica.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mitrovica, J., Tamisiea, M., Davis, J. et al. Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature 409, 1026–1029 (2001). https://doi.org/10.1038/35059054

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing