Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Formation of thermally stable alkylidene layers on a catalytically active surface


Materials containing organic–inorganic interfaces usually display a combination of molecular and solid-state properties, which are of interest for applications ranging from chemical sensing1 to microelectronics2 and catalysis3. Thiols—organic compounds carrying a SH group—are widely used to anchor organic layers to gold surfaces6, because gold is catalytically sufficiently active to replace relatively weak S–H bonds with Au–S bonds, yet too inert to attack C–C and C–H bonds in the organic layer. But although several methods4,5,6 of functionalizing the surfaces of semiconductors, oxides and metals are known, it remains difficult to attach a wide range of more complex organic species. Organic layers could, in principle, be formed on the surfaces of metals that are capable of inserting into strong bonds, but such surfaces catalyse the decomposition of organic layers at temperatures above 400 to 600 K, through progressive C–H and C–C bond breaking7. Here we report that cycloketones adsorbed on molybdenum carbide, a material known to catalyse a variety of hydrocarbon conversion reactions8,9,10,11, transform into surface-bound alkylidenes stable to above 900 K. We expect that this chemistry can be used to create a wide range of exceptionally stable organic layers on molybdenum carbide.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: High-temperature formation of cyclobutanone on the catalytically active β-Mo2C surface.
Figure 2: Infrared reflectance spectra showing the cleavage of the cyclobutanone carbonyl bond and the formation of surface cyclobutylidene.
Figure 3: Schematic illustration of reversible cleavage of the cycloketone carbonyl bond mediated by alkylidene-Mo-oxo.
Figure 4: Direct chemical determination of the presence of surface alkylidenes by performing an olefin metathesis reaction.


  1. Crooks, R. M. & Ricco, A. J. New organic materials suitable for use in chemical sensor arrays. Acc. Chem. Res. 31, 219–227 (1998).

    Article  CAS  Google Scholar 

  2. Wolkow, R. A. Controlled molecular adsorption on silicon: laying a foundation for molecular devices. Annu. Rev. Phys. Chem. 50, 413–441 (1999).

    Article  ADS  CAS  Google Scholar 

  3. Jeon, N. L. et al. Patterned polymer growth on silicon surfaces using microcontact printing and surface-initiated polymerization. Appl. Phys. Lett. 75, 4201–4202 (1999).

    Article  ADS  CAS  Google Scholar 

  4. Buriak, J. M. Organometallic chemistry on silicon surfaces: formation of functional monolayers bound through Si-C bonds. Chem. Commun. 1051–1060 (1999).

  5. Yan, C., Zharnikov, M., Gõlzhãuser, A. & Grunze, M. Preparation and characterization of self-assembled monolayers on indium tin oxide. Langmuir 16, 6208–6215 (2000).

    Article  CAS  Google Scholar 

  6. Bain, C. D. et al. Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J. Am. Chem. Soc. 111, 321–335 (1989).

    Article  CAS  Google Scholar 

  7. Somorjai, G. A. Introduction to Surface Chemistry and Catalysis 420 (John Wiley & Sons, New York, 1994).

    Google Scholar 

  8. Oyama, S. T. in The Chemistry of Transition Metal Carbides and Nitrides (Blackie, London, 1996).

    Book  Google Scholar 

  9. York, A. P. E. et al. Molybdenum and tungsten carbides as catalysts for the conversion of methane to synthesis gas using stoichiometric feedstocks. Chem. Commun. 39–40 (1997).

  10. Chen, J. G., Frühberger, B., Eng Jr, J. & Bent, B. E. Controlling surface reactivities of transition metals by carbide formation. J. Mol. Catal. A 131, 285–299 (1998).

    Article  CAS  Google Scholar 

  11. Solymosi, F. & Szõke, A. Conversion of ethane into benzene on an Mo2C/ZSM-5 catalyst. Appl. Catal. A 166, 225–235 (1998).

    Article  CAS  Google Scholar 

  12. Nugent, W. A. & Mayer, J. M. Metal-Ligand Multiple Bonds Ch. 4 (Wiley, New York, 1988).

    Google Scholar 

  13. Silverstein, R. M., Bassler, G. C. & Morrill, T. C. Spectrometric Identification of Organic Compounds 5th edn, Ch. 3 (Wiley, New York, 1991).

    Google Scholar 

  14. Cataliotti, R., Giorgini, M. G., Paliani, G. & Poletti, A. The vibrational spectrum of crystalline cyclobutanone. Spectrochim. Acta A 31, 1879–1884 (1975).

    Article  ADS  Google Scholar 

  15. Cheon, J., Dubois, L. H. & Girolami, G. S. Mechanistic studies of the thermolysis of tetraneopentyltitanium(IV). 2. Solid state and ultra-high-vacuum studies of the chemical vapor deposition of TiC films. J. Am. Chem. Soc. 119, 6814–6820 (1997).

    Article  CAS  Google Scholar 

  16. Bryan, J. C. & Mayer, J. M. Oxidative addition of cyclopentanone to WCl2(PMePh2)4 to give a tungsten (VI) oxo-alkylidene complex. J. Am. Chem. Soc. 109, 7213–7214 (1987).

    Article  CAS  Google Scholar 

  17. Bryan, J. C. & Mayer, J. M. Oxidative addition of carbon-oxygen and carbon-nitrogen double bonds to WCl2(PMePh2)4. Synthesis of tungsten metalloxirane and tungsten oxo- and imido-alkylidene complexes. J. Am. Chem. Soc. 112, 2298–2308 (1990).

    Article  CAS  Google Scholar 

  18. Spessard, G. O. & Miessler, G. L. Organometallic Chemistry 348 (Prentice-Hall, New Jersey, 1997).

    Google Scholar 

  19. Furstner, A. Olefin metathesis and beyond. Angew. Chem. Int. Edn Engl. 39, 3012–3043 (2000).

    Article  CAS  Google Scholar 

  20. Kapoor, R. & Oyama, S. T. in Synthesis and Characterization of Advanced Materials (eds Gruen, D. M. & Malhotra, R.) Ch. 18 (ACS symposium series, American Chemical Society, Washington, 1998).

    Google Scholar 

  21. Lofberg, A., Frennet, A., Leclercq, G., Leclercq, L. & Giraudon, J. M. Mechanism of WO3 reduction and carburization in CH4/H2 mixtures leading to bulk tungsten carbide powder catalysts. J. Catal. 189, 189–183 (2000).

    Article  Google Scholar 

  22. Park, S.-C., Park, H. & Lee, S. B. Reaction intermediate in thermal decomposition of 1,3-disilabutane to silicon carbide on Si(111). Comparative study of Cs+ reactive ion scattering and secondary ion mass spectrometry. Surf. Sci. 450, 117–125 (2000).

    Article  ADS  CAS  Google Scholar 

  23. Zhang, Y. et al. Heterostructures of single-walled carbon nanotubes and carbide nanorods. Science 285, 1719–1722 (1999).

    Article  CAS  Google Scholar 

  24. Mayr, A., Yu, M. P. Y. & Yam, V. W.-W. Electronic communication between metal centers across unsaturated alkylidyne ligands. J. Am. Chem. Soc. 121, 1760–1761 (1999).

    Article  CAS  Google Scholar 

  25. Wang, D., Lunsford, J. H. & Rosynek, M. P. Characterization of a Mo/ZSM-5 catalyst for the conversion of methane to benzene. J. Catal. 169, 347–358 (1997).

    Article  CAS  Google Scholar 

  26. Tanaka, K.-I. & Takeshiro, N. Atomic-scale mechanism for the activation of catalyst surfaces. J. Mol. Catal. A 141, 39–55 (1999).

    Article  CAS  Google Scholar 

  27. Weck, M., Jackiw, J. W., Rossi, R. R., Weiss, P. S. & Grubbs, R. H. Ring-opening metathesis polymerization from surfaces. J. Am. Chem. Soc. 121, 4088–4089 (1999).

    Article  CAS  Google Scholar 

  28. Watson, K. J., Zhu, J., Nguyen, S. T. & Mirkin, C. A. Hybrid nanoparticles with block copolymer shell structures. J. Am. Chem. Soc. 121, 462–463 (1999).

    Article  CAS  Google Scholar 

Download references


We acknowledge the technical assistance of A. Bouffard and J. Lafrerière, and financial support from the National Science and Engineering Research Council (NSERC) and Le Fonds pour la Formation de Chercheurs et l'Aide à la Recherche (FCAR). We thank S. T. Oyama for the preparation of the molybdenum carbide samples.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Peter H. McBreen.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zahidi, E., Oudghiri-Hassani, H. & McBreen, P. Formation of thermally stable alkylidene layers on a catalytically active surface. Nature 409, 1023–1026 (2001).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing