Abstract
Leprosy, a chronic human neurological disease, results from infection with the obligate intracellular pathogen Mycobacterium leprae, a close relative of the tubercle bacillus. Mycobacterium leprae has the longest doubling time of all known bacteria and has thwarted every effort at culture in the laboratory. Comparing the 3.27-megabase (Mb) genome sequence of an armadillo-derived Indian isolate of the leprosy bacillus with that of Mycobacterium tuberculosis (4.41 Mb) provides clear explanations for these properties and reveals an extreme case of reductive evolution. Less than half of the genome contains functional genes but pseudogenes, with intact counterparts in M. tuberculosis, abound. Genome downsizing and the current mosaic arrangement appear to have resulted from extensive recombination events between dispersed repetitive sequences. Gene deletion and decay have eliminated many important metabolic activities including siderophore production, part of the oxidative and most of the microaerophilic and anaerobic respiratory chains, and numerous catabolic systems and their regulatory circuits.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Karonga Prevention Trial Group. Randomised controlled trial of single BCG, repeated BCG, or combined BCG and killed Mycobacterium leprae vaccine for prevention of leprosy and tuberculosis in Malawi. Lancet 348, 17–24 (1996).
Nordeen, S. K. & Hombach, J. M. in Tropical Disease Research: Progress 1991-1992. Eleventh Programme Report of the UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (eds Walgate, R. & Simpson, K.) 47–55 (World Health Organization, Geneva, 1993).
World Health Organization in WHO Weekly Epidemiological Record 73, 40 (1998).
Hansen, G. H. A. Undersogelser angaende spedalskhedens aasager. Norsk Magazin for Laegervidenskaben 4 (Suppl.), 1–88 (1874).
Kirchheimer, W. K. & Storrs, E. E. Attempts to establish the armadillo (Dasypus novemcinctus Linn.) as a model for the study of leprosy. I. Report of lepromatoid leprosy in an experimentally infected armadillo. Int. J. Lepr. 39, 693–702 (1971).
Franzblau, S. Drug susceptibility testing of Mycobacterium leprae in the BACTEC 460 system. Antimicrob. Agents Chemother. 33, 2115–2117 (1989).
Shephard, C. C. in Leprosy (ed. Hastings, R. C.) 269–286 (Churchill Livingstone, Edinburgh, 1985).
Cole, S. T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544 (1998).
Tekaia, F. et al. Analysis of the proteome of Mycobacterium tuberculosis in silico. Tubercle Lung Disease 79, 329–342 (1999).
Brosch, R., Gordon, S. V., Eiglmeier, K., Garnier, T. & Cole, S. T. Comparative genomics of the leprosy and tubercle bacilli. Res. Microbiol. 151, 135–142 (2000).
Philipp, W., Schwartz, D. C., Telenti, A. & Cole, S. T. Mycobacterial genome structure. Electrophoresis 19, 573–576 (1998).
Stinear, T. P., Jenkin, G. A., Johnson, P. D. R. & Davies, J. K. Comparative genetic analysis of Mycobacterium ulcerans and Mycobacterium marinum reveals evidence of recent divergence. J. Bacteriol. 182, 6322–6330 (2000).
Marques, M. A. M., Chitale, S., Brennan, P. J. & Pessolani, M. C. V. Mapping and identification of the major cell-wall associated components of Mycobacterium leprae. Infect. Immun. 66, 2625–2631 (1998).
Jungblut, P. R. et al. Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains: towards functional genomics of microbial pathogens. Mol. Microbiol. 33, 1103–1117 (1999).
Andersson, J. O. & Andersson, S. G. E. Insights into the evolutionary process of genome degradation. Curr. Opin. Genet. Dev. 9, 664–671 (1999).
Anderssen, S. G. E. et al. The complete genome sequence of the obligate intracellular parasite Rickettsia prowazekii. Nature 396, 133–140 (1998).
Mizrahi, V., Dawes, S. S. & Rubin, H. in Molecular Genetics of Mycobacteria (eds Hatfull, G. F. & Jacobs, W. R. Jr) 159–172 (ASM, Washington DC, 2000).
Gordon, S. V., Heym, B., Parkhill, J., Barrell, B. & Cole, S. T. New insertion sequences and a novel repeated sequence in the genome of Mycobacterium tuberculosis H37Rv. Microbiology 145, 881–892 (1999).
Wolf, Y. I., Aravind, L., Grishin, N. V. & Koonin, E. V. Evolution of amino-acyl-tRNA synthetases—analysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events. Genome Res. 9, 689–710 (1999).
Poulet, S. & Cole, S. T. Repeated DNA sequences in mycobacteria. Arch. Microbiol. 163, 79–86 (1995).
Cole, S. T. Learning from the genome sequence of Mycobacterium tuberculosis H37Rv. FEBS Lett. 452, 7–10 (1999).
Ramakrishnan, L., Federspiel, N. A. & Falkow, S. Granuloma-specific expression of mycobacterium virulence proteins from the glycine-rich PE-PGRS family. Science 288, 1436–1439 (2000).
Daffe, M. & Draper, P. The envelope layers of mycobacteria with reference to their pathogenicity. Adv. Microb. Physiol. 39, 131–203 (1998).
Yuan, Y. & Barry, C. E. III A common mechanism for the biosynthesis of methoxy and cyclopropyl mycolic acids in Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 93, 12828–12833 (1996).
Draper, P., Dobson, G., Minnikin, D. E. & Minnikin, S. M. The mycolic acids of Mycobacterium leprae harvested from experimentally infected nine-banded armadillos. Ann. Microbiol. (Paris) 133, 39–47 (1982).
Glickman, M. S., Cox, J. S. & Jacobs, W. R. Jr A novel mycolic acid cyclopropane synthetase is required for coding, persistence, and virulence of Mycobacterium tuberculosis. Mol. Cell 5, 717–727 (2000).
Melancon-Kaplan, J. et al. Immunological significance of the cell wall of Mycobacterium leprae. Proc. Natl Acad. Sci. USA 85, 1917–1921 (1988).
Cox, J. S., Chen, B., McNeil, M. & Jacobs, W. R. Jr Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 402, 79–83 (1999).
Camacho, L. R., Ensergueix, D., Perez, E., Gicquel, B. & Guilhot, C. Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol. Microbiol. 34, 257–267 (1999).
Peterson, J. A. & Graham, S. E. A close family resemblance: the importance of structure in understanding cytochromes P450. Structure 6, 1079–1085 (1998).
Wheeler, P. R. & Ratledge, C. in Tuberculosis: Pathogenesis, Protection, and Control (ed. Bloom, B. R.) 353–385 (Am. Soc. Microbiol., Washington DC, 1994).
Honer Zu Bentrup, K., Miczak, A., Swenson, D. L. & Russell, D. G. Characterization of activity and expression of isocitrate lyase in Mycobacterium avium and Mycobacterium tuberculosis. J. Bacteriol. 181, 7161–7167 (1999).
McKinney, J. D. et al. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406, 735–738 (2000).
Wheeler, P. R. Oxidation of carbon sources through the tricarboxylic acid cycle in Mycobacterium leprae grown in armadillo liver. J. Gen. Microbiol. 130, 381–389 (1984).
Ratledge, C. R. in The Biology of the Mycobacteria (eds Ratledge, C. & Stanford, J.) 53–94 (Academic, San Diego, 1982).
De Voss, J. J. et al. The salicylate-derived mycobactin siderophores of Mycobacterium tuberculosis are essential for growth in macrophages. Proc. Natl Acad. Sci. USA 97, 1252–1257 (2000).
Quadri, L. E., Sello, J., Keating, T. A., Weinreb, P. H. & Walsh, C. T. Identification of a Mycobacterium tuberculosis gene cluster encoding the biosynthetic enzymes for assembly of the virulence-conferring siderophore mycobactin. Chem. Biol. 5, 631–645 (1998).
Hall, R. M. & Wheeler, P. R. Exochelin-mediated iron uptake into Mycobacterium leprae. Int. J. Lepr. Other Mycobact. Dis. 51, 490–494 (1983).
Makui, H. et al. Identification of the Escherichia coli K-12 Nramp orthologue (MntH) as a selective divalent metal ion transporter. Mol. Microbiol. 35, 1065–1078 (2000).
Shimoji, Y., Ng, V., Matsumura, K., Fischetti, V. A. & Rambukkana, A. A 21-kDa surface protein of Mycobacterium leprae binds peripheral nerve laminin-2 and mediates Schwann cell invasion. Proc. Natl Acad. Sci. USA 96, 9857–9862 (1999).
Rambukkana, A. Role of alpha-dystroglycan as a Schwann cell receptor for Mycobacterium leprae. Science 282, 2076–2079 (1998).
Rambukkana, A., Salzer, J. L., Yurchenco, P. D. & Tuomanen, E. I. Neural targeting of Mycobacterium leprae mediated by the G domain of the laminin-α2 chain. Cell 88, 811–821 (1997).
Arruda, S., Bomfim, G., Knights, R., Huima-Byron, T. & Riley, L. W. Cloning of an M. tuberculosis DNA fragment associated with entry and survival inside cells. Science 261, 1454–1457 (1993).
Eiglmeier, K., Fsihi, H., Heym, B. & Cole, S. T. On the catalase-peroxidase gene, katG, of Mycobacterium leprae and the implications for treatment of leprosy with isoniazid. FEMS Microbiol. Lett. 149, 273–278 (1997).
Eiglmeier, K., Honoré, N., Woods, S. A., Caudron, B. & Cole, S. T. Use of an ordered cosmid library to deduce the genomic organisation of Mycobacterium leprae. Mol. Microbiol. 7, 197–206 (1993).
Smith, D. R. et al. Multiplex sequencing of 1.5 Mb of the Mycobacterium leprae genome. Genome Res. 7, 802–819 (1997).
Bonfield, J. K., Smith, K. F. & Staden, R. A new DNA sequence assembly program. Nucleic Acids Res. 24, 4992–4999 (1995).
Altschul, S. F., Boguski, M. S., Gish, W. & Wooton, J. C. Issues in searching molecular sequence databases. Nature Genet. 6, 119–129 (1994).
Parkhill, J. et al. Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491. Nature 404, 502–505 (2000).
Rutherford, K. Artemis: sequence visulaization and annotation. Bioinformatics 16, 944–945 (2000).
Acknowledgements
We are grateful to B. R. Bloom, P. J. Brennan, M. J. Colston, J. Grosset and B. Ji for advice, reagents and encouragement. This work was supported by the New York Community Trust, ILEP, the Association Française Raoul Follereau, the Wellcome Trust and the Institut Pasteur.
Author information
Authors and Affiliations
Corresponding author
Supplementary information
41586_2001_BF35059006_MOESM1_ESM.doc
Supplementary Figures 2 and 3 and legends for Figures 1-3. This information can also be found at: http://www.sanger.ac.uk/Projects/M_leprae
Rights and permissions
About this article
Cite this article
Cole, S., Eiglmeier, K., Parkhill, J. et al. Massive gene decay in the leprosy bacillus. Nature 409, 1007–1011 (2001). https://doi.org/10.1038/35059006
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/35059006
This article is cited by
-
Whole mitogenome sequencing uncovers a relation between mitochondrial heteroplasmy and leprosy severity
Human Genomics (2023)
-
In silico designing of a recombinant multi-epitope antigen for leprosy diagnosis
Journal of Genetic Engineering and Biotechnology (2022)
-
LysX2 is a Mycobacterium tuberculosis membrane protein with an extracytoplasmic MprF-like domain
BMC Microbiology (2022)
-
Transitional genomes and nutritional role reversals identified for dual symbionts of adelgids (Aphidoidea: Adelgidae)
The ISME Journal (2022)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.