Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Complete mitochondrial genome sequences of two extinct moas clarify ratite evolution

Abstract

The origin of the ratites, large flightless birds from the Southern Hemisphere, along with their flighted sister taxa, the South American tinamous, is central to understanding the role of plate tectonics in the distributions of modern birds and mammals. Defining the dates of ratite divergences is also critical for determining the age of modern avian orders1,2,3,4,5,6. To resolve the ratite phylogeny and provide biogeographical data to examine these issues, we have here determined the first complete mitochondrial genome sequences of any extinct taxa— two New Zealand moa genera—along with a 1,000-base-pair sequence from an extinct Madagascan elephant-bird. For comparative data, we also generated 12 kilobases of contiguous sequence from the kiwi, cassowary, emu and two tinamou genera. This large dataset allows statistically precise estimates of molecular divergence dates and these support a Late Cretaceous vicariant speciation of ratite taxa, followed by the subsequent dispersal of the kiwi to New Zealand. This first molecular view of the break-up of Gondwana provides a new temporal framework for speciation events within other Gondwanan biota and can be used to evaluate competing biogeographical hypotheses.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 2: Ratite phylogeography.
Figure 1: Mitochondrial genome arrangement for Dinornis giganteus.

References

  1. Cracraft, J. Phylogeny and evolution of the ratite birds. Ibis 116, 494–521 (1974).

    Article  Google Scholar 

  2. Sibley, C. G. & Ahlquist, J. E. Phylogeny and Classification of Birds (Yale Univ. Press, London, 1990).

    Google Scholar 

  3. Cooper, A. et al. Independent origins of the New Zealand moas and kiwis. Proc. Natl Acad. Sci. USA 89, 8741–8744 (1992).

    ADS  CAS  Article  Google Scholar 

  4. Cooper, A. & Penny, D. Mass survival of birds across the Cretaceous–Tertiary: Molecular evidence. Science 275, 1109–1113 (1997).

    CAS  Article  Google Scholar 

  5. Feduccia, A. The Origin and Evolution of Birds (Harvard Univ. Press, Cambridge, Massachusetts, 1997).

    Google Scholar 

  6. Van Tuinen, M., Sibley, C. & Hedges, S. B. Phylogeny and biogeography of ratite birds inferred from DNA sequences of the mitochondrial ribosomal genes. Mol. Biol. Evol. 15, 370–376 (1998).

    CAS  Article  Google Scholar 

  7. Olson, S. L. in Avian Biology Vol. VIII (eds Farner, D. S., King, J. R. & Parkes, K. C.) 79–238 (Academic, Orlando, 1985).

    Book  Google Scholar 

  8. Lee, K., Feinstein, J. & Cracraft, J. in Avian Molecular Evolution and Molecular Systematics (ed. Mindell, D.) 173–208 (Academic, New York, 1997).

    Book  Google Scholar 

  9. Houde, P. Ostrich ancestors found in the Northern Hemisphere suggest new hypothesis of ratite origins. Nature 324, 563–565 (1986).

    ADS  Article  Google Scholar 

  10. Bledsoe, A. H. A phylogenetic analysis of postcranial skeletal characters of the ratite birds. Ann. Carnegie Mus. 57, 73–90 (1988).

    Google Scholar 

  11. Cooper, A. in Avian Molecular Evolution and Molecular Systematics (ed. Mindell, D.) 345–373 (Academic, New York, 1997).

    Book  Google Scholar 

  12. Handt, O., Krings, M., Ward, R. H. & Pääbo, S. The retrieval of ancient human DNA sequences. Am. J. Hum. Genet. 59, 368–376 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Krings, M. et al. Neandertal DNA sequence and the origin of modern humans. Cell 90, 19–30 (1997).

    CAS  Article  Google Scholar 

  14. Cooper, A. in Ancient DNA (eds Herrmann, B. & Hummel, S.) 149–165 (Springer, New York, 1993).

    Google Scholar 

  15. Boles, W. E. Hindlimb proportions and locomotion of Emuarius gidju (Patterson & Rich, 1987) (Aves: Casuariidae). Memoirs of the Queensland Museum 41, 235–240 (1997).

    Google Scholar 

  16. Lawver, L. A., Royer, J-Y., Sandwell, D. T. & Scotese, C. R. in Geological Evolution of Antarctica (eds Thomson, M. R. A., Crame, J. A. & Thomson, J. W.) 533–539 (Cambridge Univ. Press, Cambridge, 1991).

    Google Scholar 

  17. Cooper, R. A. & Millener, P. R. The New Zealand biota: Historical background and new research. Trends Ecol. Evol. 8, 429–433 (1993).

    CAS  Article  Google Scholar 

  18. Fleming, C. A. The Geological History of New Zealand and its Life (Univ. Auckland Press, Auckland, 1979).

    Google Scholar 

  19. Stevens, G. R. Lands in collision. N. Z. Dept Sci. Ind. Res. Inf. Serv. 161 (1985).

  20. Storch, G. in The Africa–South America Connection (eds George, W. & Lavocat, R.) 76–86 (Clarendon, Oxford, 1993).

    Google Scholar 

  21. Martin, P. G. & Dowd, J. M. Using sequences of rbcL to study phylogeny and biogeography of Nothofagus species. Aust. Syst. Bot. 6, 441–447 (1993).

    Article  Google Scholar 

  22. Herzer, R. et al. Reinga Basin and its margins. N. Z. J. Geol. Geophys. 40, 425–451 (1997).

    Article  Google Scholar 

  23. Sauer, E. G. F. Ratite eggshells and phylogenetic questions. Bonn Zool. Beitr. 23, 3–48 (1972).

    Google Scholar 

  24. Krause, D. W., Prasad, G. V. R., von Koenigswald, W., Sahni, A. & Grine, F. E. Cosmopolitanism among Gondwanan Late Cretaceous mammals. Nature 390, 504–507 (1997).

    ADS  CAS  Article  Google Scholar 

  25. Sampson, S. D. et al. Predatory dinosaur remains from Madagascar: Implications for the Cretaceous biogeography of Gondwana. Science, 280, 1048–1051 (1998).

    ADS  CAS  Article  Google Scholar 

  26. Cooper, A. & Poinar, H. Ancient DNA: Do it right or not at all. Science 289, 1139 (2000).

    CAS  Article  Google Scholar 

  27. Swofford, D. L. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods) (Sinauer, Sunderland, Massachusetts, 1999).

    Google Scholar 

  28. Huelsenbeck, J. P., Hillis, D. M. & Jones R. in Molecular Zoology: Strategies and Protocols (eds Ferraris, J. & Palumbi, S.) 19–45 (Wiley, New York, 1996).

    Google Scholar 

  29. Rambaut, A. & Bromham, L. Estimating divergence dates from molecular sequences. Mol. Biol. Evol. 15, 442–448 (1998).

    CAS  Article  Google Scholar 

  30. Felsenstein, J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376 (1981).

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank W. Boles, R. Cooper, R. Herzer, P. Houde, C. Mourer-Chauviré, D. Penny and T. Worthy for valuable comments, and M. Sorenson for allowing us access to unpublished rhea and ostrich sequences. We are grateful to T. Worthy and the staff of the Museum of New Zealand for the moa samples. Modern samples were kindly provided by A. C. Wilson (deceased), M. Potter and M. Braun, and laboratory space by R. Thomas, J. Bertranpetit and the Oxford University Museum. A.C. was supported by the NERC, the Leverhulme Fund, the New Zealand Marsden Fund and the Royal Society. C.L.F. was supported by the Comissionat per a Universitats i Recerca (Catalan Autonomous Government), and A.R. was supported by the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Cooper.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cooper, A., Lalueza-Fox, C., Anderson, S. et al. Complete mitochondrial genome sequences of two extinct moas clarify ratite evolution. Nature 409, 704–707 (2001). https://doi.org/10.1038/35055536

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35055536

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing