Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges

Abstract

Most island-arc magmatism appears to result from the lowering of the melting point of peridotite within the wedge of mantle above subducting slabs owing to the introduction of fluids from the dehydration of subducting oceanic crust1. Volcanic rocks interpreted to contain a component of melt (not just a fluid) from the subducting slab itself are uncommon, but possible examples have been recognized in the Aleutian islands, Baja California, Patagonia and elsewhere2,3,4. The geochemically distinctive rocks from these areas, termed ‘adakites’, are often associated with subducting plates that are young and warm, and therefore thought to be more prone to melting5. But the subducting lithosphere in some adakite locations (such as the Aleutian islands) appears to be too old and hence too cold to melt6,7. This implies either that our interpretation of adakite geochemistry is incorrect, or that our understanding of the tectonic context of adakites is incomplete. Here we present geochemical data from the Kamchatka peninsula and the Aleutian islands that reaffirms the slab-melt interpretation of adakites2, but in the tectonic context of the exposure to mantle flow around the edge of a torn subducting plate. We conclude that adakites are likely to form whenever the edge of a subducting plate is warmed or ablated by mantle flow. The use of adakites as tracers for such plate geometry may improve our understanding of magma genesis and thermal structure in a variety of subduction-zone environments.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Map view of the study area.
Figure 2: Along-arc seismicity in the Kurile–Kamchatka system.
Figure 3: Whole-rock SiO2 content versus FeO*/MgO ratio in volcanic rocks of the Kamchatka central depression compared to Aleutian adakites.
Figure 4: Sr/Y ratio versus SiO2 content, Mg# and Y content for volcanic rocks of the Kamchatka central depression compared to Aleutian adakites.
Figure 5: Perspective drawing showing a torn Pacific plate subducting to the north beneath the central Aleutians (Adak) and to the west beneath Kamchatka.

References

  1. 1

    Perfit, M. R., Gust, D. A., Bence, A. E., Arculus, R. J. & Taylor, S. R. Chemical characteristics of island-arc basalts: implications for mantle sources. Chem. Geol. 30, 227–256 (1980).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Kay, R. W. Aleutian magnesian andesites: melts from subducted Pacific ocean crust. J. Volcanol. Geotherm. Res. 4, 117–132 (1978).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Rogers, G., Saunders, A. D., Terrell, D. J., Verma, S. P. & Marriner, G. F. Geochemistry of Holocene volcanic rocks associated with ridge subduction in Baja, California, Mexico. Nature 315, 389–392 (1985).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Stern, C. R., Futa, K. & Muehlenbacks, K. in Andean Magmatism: Chemical and Isotopic Constraints (eds Harmon, R. S. & Barreiro, B. A.) 31–47 (Shiva, Nantwich, UK, 1984).

    Book  Google Scholar 

  5. 5

    Defant, M. J. & Drummond, M. S. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347, 662–665 (1990).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Davies, J. H. & Stevenson, D. J. Physical model of source region of subduction zone volcanics. J. Geophys. Res. 97, 2037–2070 (1992).

    ADS  Article  Google Scholar 

  7. 7

    Peacock, S. M., Rushmer, T. & Thompson, A. B. Partial melting of subducting oceanic crust. Earth Planet. Sci. Lett. 121, 227–244 (1994).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Davaille, A. & Lees, J. M. Thermal modeling of subducted plates: tear and hot spot at the Kamchatka corner. Geophys. Res. Lett. (in the press).

  9. 9

    Creager, K. C. & Boyd, T. M. The geometry of Aleutian subduction: three dimensional kinematic flow model. J. Geophys. Res. 96, 2293–2307 (1991).

    ADS  Article  Google Scholar 

  10. 10

    Yogodzinski, G. M. & Kelemen, P. B. Slab melting in the Aleutians: implications of an ion probe study of clinopyroxene in primitive adakite and basalt. Earth Planet. Sci. Lett. 158, 53–65 (1998).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Scholl, D. W., Marlow, M. S., MacLeod, N. S. & Buffington, E. C. Episodic Aleutian Ridge igneous activity: implications of Miocene and younger submarine volcanism west of Buldir Island. Geol. Soc. Am. Bull. 87, 547–554 (1976).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Lonsdale, P. Paleogene history of the Kula plate: offshore evidence and onshore implications. Geol. Soc. Am. Bull. 100, 733–754 (1988).

    ADS  Article  Google Scholar 

  13. 13

    Baker, M. B., Grove, T. L. & Price, R. Primitive basalts and andesites from the Mt. Shasta region, N. California; products of varying melt fraction and water content. Contrib. Mineral. Petrol. 118, 111–129 (1994).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Borg, L. E., Clynne, M. A. & Bullen, T. D. The variable role of slab-derived fluids in the generation of a suite of primitive calc-alkaline lavas from the southernmost Cascades, California. Can. Mineral. 35, 425–452 (1997).

    Google Scholar 

  15. 15

    Conrey, R. M. Diverse primitive magmas in the Cascade arc, northern Oregon and southern Washington. Can. Mineral. 35, 367–396 (1997).

    CAS  Google Scholar 

  16. 16

    Bacon, C. R. et al. Primitive magmas at five Cascade volcanic fields: melts from hot, heterogeneous sub-arc mantle. Can. Mineral. 35, 397–423 (1997).

    CAS  Google Scholar 

  17. 17

    Johnson, C. M. & O'Neil, J. R. Triple junction magmatism: a geochemical study of Neogene volcanic rocks in western California. Earth Planet. Sci. Lett. 71, 241–262 (1984).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Hearn, B. C., Donnelly-Nolan, J. M. & Goff, F. E. in Research in the Geysers-Clear Lake Geothermal Area, Northern California (eds McLaughlin, R. J. & Donnelly-Nolan, J. M.) 25–45 (US Government Printing Office, Washington DC, 1981).

    Google Scholar 

  19. 19

    Johnston, S. T. & Thorkelson, D. J. Cocos-Nazca slab window beneath Central America. Earth Planet. Sci. Lett. 146, 465–474 (1997).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Abratis, M. & Worner, G. Ridge collision, slab window formation and the flux of Pacific asthenosphere into the Caribbean realm in southern Costa Rica. Geology (in the press).

  21. 21

    Reay, A. & Parkinson, D. Adakites from Solander Island, New Zealand. NZ J. Geol. Geophys. 40, 121–126 (1997).

    CAS  Article  Google Scholar 

  22. 22

    Furlong, K. P. & Anderson, H. Lithospheric tectonics of a transpressional plate boundary; Fiordland, New Zealand [abstract]. Ann. Geophys. 16, 45 (1988).

    Google Scholar 

  23. 23

    Yogodzinski, G. M., Volynets, O. N., Koloskov, A. V., Seliverstov, N. I. & Matvenkov, V. V. Magnesian andesites and the subduction component in a strongly calc-alkaline series at Piip Volcano, Far Western Aleutians. J. Petrol. 35, 163–204 (1994).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Yogodzinski, G. M., Kay, R. W., Volynets, O. N., Koloskov, A. V. & Kay, S. M. Magnesian andesite in the western Aleutian Komandorsky region: Implications for slab melting and processes in the mantle wedge. Geol. Soc. Am. Bull. 107, 505–519 (1995).

    ADS  CAS  Article  Google Scholar 

  25. 25

    Morris, P. A. Slab melting as an explanation of Quaternary volcanism and aseismicity in southwest Japan. Geology 23, 395–398 (1995).

    ADS  CAS  Article  Google Scholar 

  26. 26

    Peacock, S. M. & Wang, K. Seismic consequences of warm versus cool subduction metamorphism: examples from southwest and northeast Japan. Science 286, 937–939 (1999).

    CAS  Article  Google Scholar 

  27. 27

    Gorbatov, A., Kostoglodov, V., Gerardo, S. & Gordeev, E. Seismicity and structure of the Kamchatka subduction zone. J. Geophys. Res. 102, 17883–17898 (1997).

    ADS  Article  Google Scholar 

  28. 28

    Engdahl, E. R., van der Hilst, R., Kirby, S. H. & Ekstrom, G. A global survey of slab structures and internal processes using a combined data base of high-resolution earthquake hypocenters, tomographic images and focal mechanism data. Seismol. Res. Lett. 69, 153–154 (1998).

    Google Scholar 

  29. 29

    Hochstaedter, A. G., Kepezhinskas, P., Defant, M., Drummond, M. & Koloskov, A. Insights into the volcanic arc mantle wedge from magnesian lavas from the Kamchatka arc. J. Geophys. Res. 101, 697–712 (1996).

    ADS  CAS  Article  Google Scholar 

  30. 30

    Kepezhinskas, P. et al. Trace element and Sr-Nd-Pb isotopic constraints on a three-component model of Kamchatka arc petrogenesis. Geochim. Cosmochim. Acta 61, 577–600 (1997).

    ADS  CAS  Article  Google Scholar 

  31. 31

    Kersting, A. B. & Arculus, R. J. Klyuchevskoy Volcano, Kamchatka, Russia: the role of high-flux, recharged, tapped and fractionated magma chamber(s) in the genesis of high-Al2O3 from high-MgO basalt. J. Petrol. 35, 1–42 (1994).

    ADS  CAS  Article  Google Scholar 

  32. 32

    Ozerov, A. Y., Ariskin, A. A., Kyle, P., Bogoyavlenskaya, G. E. & Karpenko, S. F. Petrological-geochemical model for genetic relationships between basaltic and andesitic magmatism of Klyuchenskoi and Bezymyannyi volcanoes, Kamchatka. Petrology 5, 550–569 (1997).

    Google Scholar 

Download references

Acknowledgements

We thank P. Kelemen and K. Furlong for discussions; J. Morris and M. Defant for comments on the manuscript; and A. Bellousov, M. Bellousova, M. Ejzak, A. Koloskov, G. Ponomarov and V. Ponomareva for assistance in the field. This work was supported by the US NSF (G.M.Y. and J.M.L.), the German Science Foundation, the Volkswagen Foundation and the European Union (INTAS) (to G.W. and T.C.), the Russian Foundation for Basic Research (O.V. and T.C.), and by a grant from the Whitaker Foundation to Dickinson College.

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. M. Yogodzinski.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yogodzinski, G., Lees, J., Churikova, T. et al. Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges. Nature 409, 500–504 (2001). https://doi.org/10.1038/35054039

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing