Letter | Published:

Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges

Naturevolume 409pages500504 (2001) | Download Citation

Subjects

Abstract

Most island-arc magmatism appears to result from the lowering of the melting point of peridotite within the wedge of mantle above subducting slabs owing to the introduction of fluids from the dehydration of subducting oceanic crust1. Volcanic rocks interpreted to contain a component of melt (not just a fluid) from the subducting slab itself are uncommon, but possible examples have been recognized in the Aleutian islands, Baja California, Patagonia and elsewhere2,3,4. The geochemically distinctive rocks from these areas, termed ‘adakites’, are often associated with subducting plates that are young and warm, and therefore thought to be more prone to melting5. But the subducting lithosphere in some adakite locations (such as the Aleutian islands) appears to be too old and hence too cold to melt6,7. This implies either that our interpretation of adakite geochemistry is incorrect, or that our understanding of the tectonic context of adakites is incomplete. Here we present geochemical data from the Kamchatka peninsula and the Aleutian islands that reaffirms the slab-melt interpretation of adakites2, but in the tectonic context of the exposure to mantle flow around the edge of a torn subducting plate. We conclude that adakites are likely to form whenever the edge of a subducting plate is warmed or ablated by mantle flow. The use of adakites as tracers for such plate geometry may improve our understanding of magma genesis and thermal structure in a variety of subduction-zone environments.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Perfit, M. R., Gust, D. A., Bence, A. E., Arculus, R. J. & Taylor, S. R. Chemical characteristics of island-arc basalts: implications for mantle sources. Chem. Geol. 30, 227–256 (1980).

  2. 2

    Kay, R. W. Aleutian magnesian andesites: melts from subducted Pacific ocean crust. J. Volcanol. Geotherm. Res. 4, 117–132 (1978).

  3. 3

    Rogers, G., Saunders, A. D., Terrell, D. J., Verma, S. P. & Marriner, G. F. Geochemistry of Holocene volcanic rocks associated with ridge subduction in Baja, California, Mexico. Nature 315, 389–392 (1985).

  4. 4

    Stern, C. R., Futa, K. & Muehlenbacks, K. in Andean Magmatism: Chemical and Isotopic Constraints (eds Harmon, R. S. & Barreiro, B. A.) 31–47 (Shiva, Nantwich, UK, 1984).

  5. 5

    Defant, M. J. & Drummond, M. S. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347, 662–665 (1990).

  6. 6

    Davies, J. H. & Stevenson, D. J. Physical model of source region of subduction zone volcanics. J. Geophys. Res. 97, 2037–2070 (1992).

  7. 7

    Peacock, S. M., Rushmer, T. & Thompson, A. B. Partial melting of subducting oceanic crust. Earth Planet. Sci. Lett. 121, 227–244 (1994).

  8. 8

    Davaille, A. & Lees, J. M. Thermal modeling of subducted plates: tear and hot spot at the Kamchatka corner. Geophys. Res. Lett. (in the press).

  9. 9

    Creager, K. C. & Boyd, T. M. The geometry of Aleutian subduction: three dimensional kinematic flow model. J. Geophys. Res. 96, 2293–2307 (1991).

  10. 10

    Yogodzinski, G. M. & Kelemen, P. B. Slab melting in the Aleutians: implications of an ion probe study of clinopyroxene in primitive adakite and basalt. Earth Planet. Sci. Lett. 158, 53–65 (1998).

  11. 11

    Scholl, D. W., Marlow, M. S., MacLeod, N. S. & Buffington, E. C. Episodic Aleutian Ridge igneous activity: implications of Miocene and younger submarine volcanism west of Buldir Island. Geol. Soc. Am. Bull. 87, 547–554 (1976).

  12. 12

    Lonsdale, P. Paleogene history of the Kula plate: offshore evidence and onshore implications. Geol. Soc. Am. Bull. 100, 733–754 (1988).

  13. 13

    Baker, M. B., Grove, T. L. & Price, R. Primitive basalts and andesites from the Mt. Shasta region, N. California; products of varying melt fraction and water content. Contrib. Mineral. Petrol. 118, 111–129 (1994).

  14. 14

    Borg, L. E., Clynne, M. A. & Bullen, T. D. The variable role of slab-derived fluids in the generation of a suite of primitive calc-alkaline lavas from the southernmost Cascades, California. Can. Mineral. 35, 425–452 (1997).

  15. 15

    Conrey, R. M. Diverse primitive magmas in the Cascade arc, northern Oregon and southern Washington. Can. Mineral. 35, 367–396 (1997).

  16. 16

    Bacon, C. R. et al. Primitive magmas at five Cascade volcanic fields: melts from hot, heterogeneous sub-arc mantle. Can. Mineral. 35, 397–423 (1997).

  17. 17

    Johnson, C. M. & O'Neil, J. R. Triple junction magmatism: a geochemical study of Neogene volcanic rocks in western California. Earth Planet. Sci. Lett. 71, 241–262 (1984).

  18. 18

    Hearn, B. C., Donnelly-Nolan, J. M. & Goff, F. E. in Research in the Geysers-Clear Lake Geothermal Area, Northern California (eds McLaughlin, R. J. & Donnelly-Nolan, J. M.) 25–45 (US Government Printing Office, Washington DC, 1981).

  19. 19

    Johnston, S. T. & Thorkelson, D. J. Cocos-Nazca slab window beneath Central America. Earth Planet. Sci. Lett. 146, 465–474 (1997).

  20. 20

    Abratis, M. & Worner, G. Ridge collision, slab window formation and the flux of Pacific asthenosphere into the Caribbean realm in southern Costa Rica. Geology (in the press).

  21. 21

    Reay, A. & Parkinson, D. Adakites from Solander Island, New Zealand. NZ J. Geol. Geophys. 40, 121–126 (1997).

  22. 22

    Furlong, K. P. & Anderson, H. Lithospheric tectonics of a transpressional plate boundary; Fiordland, New Zealand [abstract]. Ann. Geophys. 16, 45 (1988).

  23. 23

    Yogodzinski, G. M., Volynets, O. N., Koloskov, A. V., Seliverstov, N. I. & Matvenkov, V. V. Magnesian andesites and the subduction component in a strongly calc-alkaline series at Piip Volcano, Far Western Aleutians. J. Petrol. 35, 163–204 (1994).

  24. 24

    Yogodzinski, G. M., Kay, R. W., Volynets, O. N., Koloskov, A. V. & Kay, S. M. Magnesian andesite in the western Aleutian Komandorsky region: Implications for slab melting and processes in the mantle wedge. Geol. Soc. Am. Bull. 107, 505–519 (1995).

  25. 25

    Morris, P. A. Slab melting as an explanation of Quaternary volcanism and aseismicity in southwest Japan. Geology 23, 395–398 (1995).

  26. 26

    Peacock, S. M. & Wang, K. Seismic consequences of warm versus cool subduction metamorphism: examples from southwest and northeast Japan. Science 286, 937–939 (1999).

  27. 27

    Gorbatov, A., Kostoglodov, V., Gerardo, S. & Gordeev, E. Seismicity and structure of the Kamchatka subduction zone. J. Geophys. Res. 102, 17883–17898 (1997).

  28. 28

    Engdahl, E. R., van der Hilst, R., Kirby, S. H. & Ekstrom, G. A global survey of slab structures and internal processes using a combined data base of high-resolution earthquake hypocenters, tomographic images and focal mechanism data. Seismol. Res. Lett. 69, 153–154 (1998).

  29. 29

    Hochstaedter, A. G., Kepezhinskas, P., Defant, M., Drummond, M. & Koloskov, A. Insights into the volcanic arc mantle wedge from magnesian lavas from the Kamchatka arc. J. Geophys. Res. 101, 697–712 (1996).

  30. 30

    Kepezhinskas, P. et al. Trace element and Sr-Nd-Pb isotopic constraints on a three-component model of Kamchatka arc petrogenesis. Geochim. Cosmochim. Acta 61, 577–600 (1997).

  31. 31

    Kersting, A. B. & Arculus, R. J. Klyuchevskoy Volcano, Kamchatka, Russia: the role of high-flux, recharged, tapped and fractionated magma chamber(s) in the genesis of high-Al2O3 from high-MgO basalt. J. Petrol. 35, 1–42 (1994).

  32. 32

    Ozerov, A. Y., Ariskin, A. A., Kyle, P., Bogoyavlenskaya, G. E. & Karpenko, S. F. Petrological-geochemical model for genetic relationships between basaltic and andesitic magmatism of Klyuchenskoi and Bezymyannyi volcanoes, Kamchatka. Petrology 5, 550–569 (1997).

Download references

Acknowledgements

We thank P. Kelemen and K. Furlong for discussions; J. Morris and M. Defant for comments on the manuscript; and A. Bellousov, M. Bellousova, M. Ejzak, A. Koloskov, G. Ponomarov and V. Ponomareva for assistance in the field. This work was supported by the US NSF (G.M.Y. and J.M.L.), the German Science Foundation, the Volkswagen Foundation and the European Union (INTAS) (to G.W. and T.C.), the Russian Foundation for Basic Research (O.V. and T.C.), and by a grant from the Whitaker Foundation to Dickinson College.

Author information

Author notes

  1. O. N. Volynets: Deceased

Affiliations

  1. Department of Geology, Dickinson College, Carlisle, 17013-2896, Pennsylvania, USA

    • G. M. Yogodzinski
  2. Department of Geological Sciences, University of North Carolina, Chapel Hill, 27516, North Carolina, USA

    • J. M. Lees
  3. Institute of Volcanic Geology and Geochemistry, Petropavlovsk-Kamchatsky, 683006, Russia

    • T. G. Churikova
    •  & O. N. Volynets
  4. Geochemisches Institut, Goldschmidstrasse, 1, Göettingen, 37077, Germany

    • T. G. Churikova
    • , F. Dorendorf
    •  & G. Wöerner

Authors

  1. Search for G. M. Yogodzinski in:

  2. Search for J. M. Lees in:

  3. Search for T. G. Churikova in:

  4. Search for F. Dorendorf in:

  5. Search for G. Wöerner in:

  6. Search for O. N. Volynets in:

Corresponding author

Correspondence to G. M. Yogodzinski.

About this article

Publication history

Received

Accepted

Issue Date

DOI

https://doi.org/10.1038/35054039

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.